### functions related to QC
## the functions make related plots and output some tables
### mat_density_plot for coverage and methylation, add mean and median lines on the heatmap
# == title
# Basic qc plot for distribution of methylation and CpG coverage
#
# == param
# -sample_id a vector of sample IDs. You can generate plots for a list of samples in a batch
# which is faster than making it one by one.
# -chromosome a vector of chromosome names
# -background background regions where the CpG sites will only be looked into
#
# == detail
# For each sample id, it will produce five plots:
#
# - mean/median CpG coverage per chromosome, red area corresponds to the 25th and 75th percential.
# - histogram of CpG coverage
# - mean/median methylation per chromosome, red area corresponds to the 25th and 75th percential.
# - histogram of methylation
# - mean/median Methylation at each CpG coverage , red area corresponds to the 25th and 75th percential at each CpG coverage.
#
# == value
# A list of corresponding statistics
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
methylation_qcplot = function(sample_id, chromosome = paste0("chr", 1:22), background = NULL) {
# coverage and methylation per chromosome
data = rep(list(list(cov = NULL, meth = NULL, strand = NULL, cov_count = NULL)), length(sample_id))
names(data) = sample_id
for(chr in chromosome) {
message(qq("loading methylation data for @{chr}"))
methylation_hooks$set_chr(chr, verbose = FALSE)
if(!is.null(background)) {
mtch = as.matrix(findOverlaps(methylation_hooks$gr, background))
}
for(sid in sample_id) {
message(qq("split data for @{sid}, @{chr}"), appendLF = FALSE)
cv = methylation_hooks$cov[, sid]
ind = which(cv != 0)
data[[sid]]$cov_count[[chr]] = c("zero" = length(cv) - length(ind), "all" = length(cv))
if(!is.null(background)) {
ind = intersect(ind, mtch[, 1])
}
if(length(ind) > 10000) {
message(", randomly sample 10000 CpG sites.", appendLF = FALSE)
ind = sort(sample(ind, 10000))
}
cv = cv[ind]
mh = as.vector(methylation_hooks$meth[ind, sid])
strd = as.vector(strand(methylation_hooks$gr[ind]))
data[[sid]]$cov[[chr]] = cv
data[[sid]]$meth[[chr]] = mh
data[[sid]]$strand[[chr]] = strd
message("\n", appendLF = FALSE)
}
}
for(sid in sample_id) {
message(qq("making qc plot for @{sid}"))
cov = data[[sid]]$cov
meth = data[[sid]]$meth
strand = data[[sid]]$strand
cov_count = data[[sid]]$cov_count
par(mfrow = c(2, 3))
# mean coverage per chromosome
cpg_coverage_mean = sapply(cov, mean)
cpg_coverage_median = sapply(cov, median)
cpg_coverage_q25 = sapply(cov, quantile, 0.25)
cpg_coverage_q75 = sapply(cov, quantile, 0.75)
plot(c(0, length(cpg_coverage_mean)), c(0, max(c(cpg_coverage_mean, cpg_coverage_median))), axes = FALSE, ann = FALSE, type="n")
for(i in seq_along(cpg_coverage_mean)) {
abline(v = i, lty = 3, col = "grey")
lines(c(i-1, i), c(cpg_coverage_mean[i], cpg_coverage_mean[i]), lwd = 2)
lines(c(i-1, i), c(cpg_coverage_median[i], cpg_coverage_median[i]), lwd = 2, col = "red")
rect(i-1, cpg_coverage_q25[i], i, cpg_coverage_q75[i], col = "#FF000040", border = NA)
}
abline(v = 0, lty = 3, col = "grey")
par(las = 3)
axis(side = 1, at = seq_along(cpg_coverage_mean)-0.5, labels = names(cpg_coverage_mean))
axis(side = 2)
box()
par(las = 0)
title(main = qq("Coverage per chromosome (@{sid})"), ylab = "mean and median CpG coverage")
legend("bottomleft", lty=1, col = c("black", "red"), legend = c("mean", "median"))
# coverage distribution
cov_count = do.call("cbind", cov_count)
zero_cov_rate = sprintf("%.2f", sum(cov_count[1, ])/sum(cov_count[2, ])*100)
if(all(unique(unlist(strand)) %in% c("+", "-"))) {
x = unlist(cov)
q99 = quantile(unlist(cov), 0.99)
y = unlist(strand)
x1 = x[y == "+"]
x2 = x[y == "-"]
ta = table(x)
ta1 = table(x1)
ta2 = table(x2)
xlim = range(c(as.numeric(names(ta)), as.numeric(names(ta1)), as.numeric(names(ta2))))
ylim = range(ta, ta1, ta2)
plot(as.numeric(names(ta)), ta, xlim = xlim, ylim = ylim, main = qq("histogram of CpG coverage (@{sid})\n@{zero_cov_rate}% have zero coverage"), log = "x", axes = FALSE, type = "h", ylab = "", xlab="CpG coverage")
axis(side = 1)
breaks = seq(0, max(ta)/sum(ta), by = 0.02)
axis(side = 2, at = breaks*sum(ta), labels = breaks)
box()
par(new = TRUE)
plot(as.numeric(names(ta1))+0.2, ta1, xlim = xlim, ylim = ylim, type = "h", col = "red", log = "x", axes = FALSE, ann = FALSE)
par(new = TRUE)
plot(as.numeric(names(ta2))+0.4, ta2, xlim = xlim, ylim = ylim, type = "h", col = "blue", log = "x", axes = FALSE, ann = FALSE)
#axis(side = 2)
legend("topright", lty = 1, col = c("black", "red", "blue"), legend = c("strand *", "strand +", "strand -"))
par(new = FALSE)
} else {
ta = table(unlist(cov))
q99 = quantile(unlist(cov), 0.99)
plot(as.numeric(names(ta)), ta, main = qq("histogram of CpG coverage (@{sid})\n@{zero_cov_rate}% have zero coverage"), log = "x", axes = FALSE, type = "h", ylab = "", xlab="CpG coverage")
abline(v = q99, lty = 2, col = "blue"); text(q99, 0, "q99", adj = c(0, 0))
axis(side = 1)
breaks = seq(0, max(ta)/sum(ta), by = 0.02)
axis(side = 2, at = breaks*sum(ta), labels = breaks)
box()
}
# ## barplot of zero-coverage and non-zero-coverage
# plot(c(0, length(cov_count)), c(0, max(unlist(cov_count))), axes = FALSE, ann = FALSE, type = "n")
# for(i in seq_along(cov_count)) {
# rect(i-1, 0, i, cov_count[[i]]["zero"], col = "orange")
# rect(i-1, cov_count[[i]]["zero"], i, cov_count[[i]]["all"], col = "blue")
# abline(v = i, lty = 3, col = "grey")
# }
# abline(v = 0, lty = 3, col = "grey")
# par(las = 3)
# axis(side = 1, at = seq_along(cov_count) - 0.5, labels = names(cov_count))
# axis(side = 2)
# box()
# par(las = 0)
# title(main = qq("%zeor/non_zero CpG coverage (@{sid})"), ylab = "number of CpG sites")
# legend("topright", pch = 15, col = c("orange", "blue"), legend = c("zero", "non-zero"))
# mean methylation per chromosome
cpg_methyrate_mean = sapply(meth, mean)
cpg_methyrate_median = sapply(meth, median)
cpg_methyrate_q25 = sapply(meth, quantile, 0.25)
cpg_methyrate_q75 = sapply(meth, quantile, 0.75)
plot(c(0, length(cpg_methyrate_mean)), c(0, 1), axes = FALSE, ann = FALSE, type = "n")
for(i in seq_along(cpg_methyrate_mean)) {
abline(v = i, lty = 3, col = "grey")
lines(c(i-1, i), c(cpg_methyrate_mean[i], cpg_methyrate_mean[i]), lwd = 2)
lines(c(i-1, i), c(cpg_methyrate_median[i], cpg_methyrate_median[i]), lwd = 2, col = "red")
rect(i-1, cpg_methyrate_q25[i], i, cpg_methyrate_q75[i], col = "#FF000040", border = NA)
}
abline(v = 0, lty = 3, col = "grey")
par(las = 3)
axis(side = 1, at = seq_along(cpg_methyrate_mean) - 0.5, labels = names(cpg_methyrate_mean))
axis(side = 2)
box()
par(las = 0)
title(main = qq("methylation per chromosome (@{sid})"), ylab = "mean and median methylation")
legend("bottomleft", lty=1, col = c("black", "red"), legend = c("mean", "median"))
# distribution of methylation on all chromosomes
hist(unlist(meth), main = qq("histogram of methylation (@{sid})"), xlab = "methylation")
# methylation to coverage
coverage2methyrate = tapply(unlist(meth), unlist(cov), mean)
plot(as.numeric(names(coverage2methyrate)), coverage2methyrate, ylim = c(0, 1), pch=16, col = "#000000A0", log = "x", cex = 0.8, xlab = "CpG coverage", ylab = "mean methylation", main = qq("Mean Methylation for each CpG coverage (@{sid})"))
coverage2methyrate = tapply(unlist(meth), unlist(cov), median)
points(as.numeric(names(coverage2methyrate)), coverage2methyrate, pch=16, cex = 0.8, col = "#FF0000A0")
coverage2methyrate_q25 = tapply(unlist(meth), unlist(cov), quantile, 0.25)
coverage2methyrate_q75 = tapply(unlist(meth), unlist(cov), quantile, 0.75)
coverage2methyrate_n = tapply(unlist(meth), unlist(cov), length)
x = as.numeric(names(coverage2methyrate))
l = coverage2methyrate_n > max(coverage2methyrate_n)*0.05
polygon(c(x[l], rev(x[l])), c(coverage2methyrate_q75[l], rev(coverage2methyrate_q25[l])),
col = "#FF000040", border = NA)
legend("bottomleft", pch = 16, col = c("black", "red"), legend = c("mean", "median"))
abline(v = q99, lty = 2, col = "blue"); text(q99, 0, "q99 of cov", adj = c(0, 0))
plot(NULL, xlim = c(0, 1), ylim = c(0, 1), type = "n", axes = FALSE, ann = FALSE)
mean_meth = mean(unlist(meth), na.rm = TRUE)
median_meth = median(unlist(meth), na.rm = TRUE)
mean_cov = mean(unlist(cov), na.rm = TRUE)
median_cov = median(unlist(cov), na.rm = TRUE)
txt = qq("mean_meth: @{sprintf('%.1f', mean_meth)}\nmedian_meth: @{sprintf('%.1f', median_meth)}")
txt = qq("@{txt}\nmean_cov: @{round(mean_cov)}\nmedian_cov: @{median_cov}")
text(0.2, 0.8, txt, adj = c(0, 1))
par(mfrow = c(1, 1))
}
return(invisible(data))
}
# == title
# Plot coverage and methylation for a single sample
#
# == param
# -sid a single sample ID
# -chromosome a vector of chromosome names
# -species species
# -nw number of windows to segment the genome
# -pch point type
# -pt_gp graphic parameters for points (``col`` will be excluded)
# -transparency transparency of points
# -title title of the plot
# -... pass to `gtrellis::gtrellis_layout`
#
# == details
# The whole genome is segented by ``nw`` windows and mean methylation and mean CpG coverage
# are visualized as two tracks.
#
# == seealso
# `methylation_gtrellis_multiple_samples` visualizes methylation for multiple samples.
#
# == value
# No value is returned.
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
methylation_gtrellis = function(sid, chromosome = paste0("chr", 1:22),
species = "hg19", nw = 10000, pch = 16, pt_gp = gpar(size = unit(1, "mm")), transparency = 0.8,
title = qq("Distribution of CpG coverage and methylation for @{sid}"), ...) {
# window size
chr_len = read.chromInfo(species = species)$chr.len[chromosome]
w = round(sum(chr_len)/nw)
message(qq("number of windows: @{nw}, window size: @{w} bp"))
flag = 0
col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"), transparency = transparency)
for(chr in chromosome) {
methylation_hooks$set_chr(chr, verbose = FALSE)
meth = methylation_hooks$meth[, sid]
cov = methylation_hooks$cov[, sid]; cov = log10(cov+1)
gr = methylation_hooks$gr
chr_gr = GRanges(seqnames = chr, ranges = IRanges(1, chr_len[chr]))
chr_window = makeWindows(chr_gr, w = w)
mtch = as.matrix(findOverlaps(chr_window, gr))
gr2 = chr_window[unique(mtch[,1])]
meth = tapply(meth[ mtch[,2] ], mtch[,1], mean, na.rm = TRUE)
cov = tapply(cov[ mtch[,2] ], mtch[,1], mean, na.rm = TRUE)
if(flag == 0) {
gtrellis_layout(category = chromosome, species = species,
n_track = 2, track_ylim = c(0, quantile(cov, 0.99), 0, 1),
track_ylab = c("log10(coverage)", "methylation"),
add_name_track = TRUE, add_ideogram_track = TRUE, ...)
flag = 1
}
message(qq("making plot for @{chr}"))
add_points_track(gr2, cov, track = 2, category = chr, pch = pch,
gp = gp_c(gpar(col = add_transparency("black", transparency)), pt_gp))
add_points_track(gr2, meth, track = 3, category = chr, pch = pch,
gp = gp_c(gpar(col = col_fun(meth)), pt_gp))
}
}
gp_c = function(gp1, gp2) {
gp = c(gp1, gp2)
class(gp) = "gpar"
gp
}
# == title
# Plot methylation for multiple samples as heatmaps
#
# == param
# -sample_id a vector of sample IDs
# -subgroup annotation of samples (e.g. subtypes)
# -chromosome a vector of chromosome names
# -species species
# -nw number of windows to segment the genome
# -title title of the plot
# -... pass to `gtrellis::gtrellis_layout`
#
# == details
# The whole genome is segented by ``nw`` windows. Methylation in different subgroups are visualized as separated tracks.
# Between every two subgroups, there is a one row heatmap showing methylation difference.
#
# == value
# No value is returned
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
methylation_gtrellis_multiple_samples = function(sample_id, subgroup,
chromosome = paste0("chr", 1:22), species = "hg19", nw = 2000,
title = qq("genome-wide methylation for @{length(sample_id)} samples"), ...) {
chr = sample(chromosome, 1)
methylation_hooks$set_chr(chr, verbose = FALSE)
mean_meth = tapply(colMeans(methylation_hooks$meth[, sample_id], na.rm = TRUE), subgroup, mean, na.rm = TRUE)
mean_meth = sort(mean_meth, decreasing = TRUE)
subgroup_level = names(mean_meth)
col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
tb = table(subgroup)[subgroup_level]
n = length(tb)
ty = rep(c(0, 1), 2*n - 1)
for(i in seq_len(n)) {
ty[2*(2*i-1)-1] = 0.5
ty[2*(2*i-1)] = tb[i] + 0.5
}
track_height = unit(tb[1], "null")
track_ylab = subgroup_level[1]
for(i in seq_len(n)) {
if(i == 1) next
track_height = unit.c(track_height, unit(2, "mm"), unit(tb[i], "null"))
track_ylab = c(track_ylab, "", subgroup_level[i])
}
gtrellis_layout(category = chromosome, species = species, track_axis = FALSE, title = title,
n_track = length(subgroup_level)*2 - 1, track_ylab = track_ylab, track_ylim = ty, track_height = track_height,
add_name_track = TRUE, add_ideogram_track = TRUE, ...)
# window size
chr_len = read.chromInfo(species = species)$chr.len[chromosome]
w = round(sum(chr_len)/nw)
message(qq("number of windows: @{nw}, window size: @{w} bp"))
diff_col_fun = NULL
for(chr in chromosome) {
methylation_hooks$set_chr(chr, verbose = FALSE)
meth = methylation_hooks$meth[, sample_id]
gr = methylation_hooks$gr
chr_gr = GRanges(seqnames = chr, ranges = IRanges(1, chr_len[chr]))
chr_window = makeWindows(chr_gr, w = w)
mtch = as.matrix(findOverlaps(chr_window, gr))
gr2 = chr_window[unique(mtch[,1])]
meth = tapply(mtch[,2], mtch[,1], function(i) colMeans(meth[i, , drop = FALSE]))
meth = do.call("rbind", meth)
for(i in seq_along(subgroup_level)) {
message(qq("making heatmap for @{chr}, @{subgroup_level[i]}"))
m = meth[, subgroup == subgroup_level[i], drop = FALSE]
add_heatmap_track(gr2, m, category = chr, track = 2*i, fill = col_fun)
add_track(gr2, category = chr, track = 2*i, panel_fun = function(gr) {
grid.rect(gp = gpar(fill = "transparent"))
})
if(i > 1) {
mean_diff = rowMeans(meth[, subgroup == subgroup_level[i-1], drop = FALSE], na.rm = TRUE) -
rowMeans(meth[, subgroup == subgroup_level[i], drop = FALSE], na.rm = TRUE)
if(is.null(diff_col_fun)) {
diff_col_fun = generate_diff_color_fun(rowMeans(meth[, subgroup == subgroup_level[1], drop = FALSE], na.rm = TRUE) -
rowMeans(meth[, subgroup == subgroup_level[2], drop = FALSE], na.rm = TRUE))
}
add_heatmap_track(gr2, mean_diff, category = chr, track = 2*i-1, fill = diff_col_fun)
add_track(gr2, category = chr, track = 2*i-1, panel_fun = function(gr) {
grid.rect(gp = gpar(fill = "transparent"))
})
}
}
}
}
# == title
# Visualize distribution of a matrix or a list
#
# == param
# -x a matrix or a list. If it is a matrix, distribution in columns are visualized
# -subgroup subgroup information
# -reorder_column if it is true, samples are first ordered by subgroups and in each subgroup, samples are
# ordered by median values
# -od order of columns. If ``reorder_column`` is set to ``TRUE``, this argument is ignored.
# -ha Annotations that are specified as a `ComplexHeatmap::HeatmapAnnotation-class` object. The annotations
# will be put on top of the heatmap.
# -type three types of plots are supported, see details
# -title title for the plot
# -... pass to `ComplexHeatmap::densityHeatmap`
#
# == details
# Three types of plots for visualizing distributions are supported:
#
# -densityHeatmap: density of distribution is visualized as heatmaps, use `ComplexHeatmap::densityHeatmap`
# -lineplot: distribution is visualized as normal line plot, use `graphics::matplot`
# -MDS: multiple dimension scaling by calling `stats::cmdscale`
#
# == value
# Order of columns in the heatmap
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
mat_dist = function(x, subgroup = NULL, reorder_column = TRUE, od = if(is.matrix(x)) seq_len(ncol(x)) else seq_along(x),
ha = if(is.null(subgroup)) NULL else HeatmapAnnotation(subgroup = subgroup, show_annotation_name = TRUE),
type = c("densityHeatmap", "MDS"), title = title, ...) {
if(is.null(ha)) {
col = structure(seq_along(unique(subgroup)), names = unique(subgroup))
col_v = col[subgroup]
} else {
anno_names = tolower(names(ha@anno_list))
i = which(anno_names %in% c("subtype", "subgroup", "type", "group"))
if(length(i)) {
i = i[1]
} else {
i = 1
}
col = ha@anno_list[[i]]@color_mapping@colors
col_v = col[subgroup]
}
if("densityHeatmap" %in% type) {
if(reorder_column) {
if(inherits(x, "list")) {
od = order(factor(subgroup, levels = unique(subgroup), ordered = TRUE), sapply(x, median, na.rm = TRUE))
} else {
od = order(factor(subgroup, levels = unique(subgroup), ordered = TRUE), apply(x, 2, median, na.rm = TRUE))
}
}
draw(densityHeatmap(x, top_annotation = ha, title = title, column_order = od, cluster_columns = FALSE, ...))
}
if("lineplot" %in% type) {
# use line plot to represent distributions
par(xpd = FALSE)
if(is.matrix(x)) {
den_x = matrix(nrow = 512, ncol = dim(x)[2])
den_y = matrix(nrow = 512, ncol = dim(x)[2])
for(i in seq_len(dim(x)[2])) {
den = density(x[, i], na.rm = TRUE)
den_x[, i] = den$x
den_y[, i] = den$y
}
} else {
den_x = matrix(nrow = 512, ncol = length(x))
den_y = matrix(nrow = 512, ncol = length(x))
for(i in seq_along(x)) {
den = density(x[[i]], na.rm = TRUE)
den_x[, i] = den$x
den_y[, i] = den$y
}
}
matplot(den_x, den_y, type = "l", col = col_v, xlab = "value", ylab = "density", main = qq("density distribution: @{title}"))
}
if("MDS" %in% type) {
## MDS plot
if(is.data.frame(x) || is.matrix(x)) {
mat = as.matrix(x)
# loc = cmdscale(dist2(mat, fun = function(x, y) {l = is.na(x) | is.na(y); x = x[!l]; y = y[!l]; sqrt(sum((x-y)^2))}))
# plot(loc[, 1], loc[, 2], pch = 16, cex = 1, col = col_v, main = qq("MDS:@{title}"), xlab = "dimension 1", ylab = "dimension 2")
nl = min(c(2000, round(nrow(mat)*0.1)))
print(nl)
mat = mat[order(rowSds(mat), decreasing = TRUE)[1:nl], ]
fit = prcomp(t(mat))
sm = summary(fit)
prop = sm$importance[2, 1:2]
loc = fit$x[, 1:2]
plot(loc[, 1], loc[, 2], pch = 16, cex = 1, col = col_v, main = qq("PCA:@{title}"), xlab = qq("PC1 (@{round(prop[1]*100)}%)"), ylab = qq("PC2 (@{round(prop[2]*100)}%)"))
legend("bottomleft", pch = 16, legend = names(col), col = col)
# plot(loc[, 1], loc[, 2], type = "n", pch = 16, cex = 1, col = col[anno], main = qq("MDS:@{title}"), xlab = "dimension 1", ylab = "dimension 2")
text(loc[, 1], loc[, 2], colnames(x), col = col_v, cex = 0.8)
}
}
return(od)
}
# == title
# Global methylation distribution
#
# == param
# -sample_id a vector of sample IDs
# -subgroup subgroup information
# -reorder_column if it is true, samples are first ordered by subgroups and in each subgroup, samples are
# ordered by median values
# -ha Annotations that are specified as a `ComplexHeatmap::HeatmapAnnotation-class` object. The annotations
# will be put on top of the heatmap.
# -chromosome chromosome names
# -by_chr whether make the plot by chromosome
# -background background to look into. The value can be a single `GenomicRanges::GRanges` object or a list of `GenomicRanges::GRanges` objects.
# -p probability to randomly sample CpG sites
# -meth_range the range of methylation on the plot
# -max_cov maximum range for coverage
# -plot_cov whether also make plot for coverage
#
# == details
# There are two types of plots:
#
# - a heatmap showing the distribution density of methylation in all samples
# - a MDS plot
#
# == value
# If ``by_chr`` is set to ``FALSE``, it returns a vector of column order.
#
# == seealso
# It uses `mat_dist` to make the plots
#
# == author
# Zuguang Gu <z.gu@dkfz.de>
#
methylation_global_distribution = function(sample_id, subgroup,
reorder_column = TRUE,
ha = HeatmapAnnotation(subgroup = subgroup, show_annotation_name = TRUE),
chromosome = paste0("chr", 1:22), by_chr = FALSE,
background = NULL, p = 0.001, meth_range = c(0, 1),
max_cov = 100, plot_cov = FALSE) {
###############################################
# distribution of global methylation
if(inherits(background, "list")) {
meth_list = vector("list", length(sample_id))
cov_list = NULL
if(length(background) != length(sample_id)) {
stop("Since you specified `background` as a list, the length should be same as `sample_id`.")
}
for(chr in chromosome) {
methylation_hooks$set_chr(chr, verbose = FALSE)
meth_gr = methylation_hooks$gr
ind_list = lapply(seq_along(sample_id), function(i) {
mtch = as.matrix(findOverlaps(meth_gr, background[[i]]))
ind = unique(mtch[, 1])
nr = length(ind)
if(is.null(p) || by_chr) p <<- min(c(3000, nr))/nr
ind = ind[sample(c(FALSE, TRUE), nr, replace = TRUE, prob = c(1-p, p))]
message(qq("random sampled @{length(ind)} sites from @{nr} sites on @{chr} in @{sample_id[i]} (with p = @{sprintf('%.1e', p)})"))
ind
})
current_meth_list = lapply(seq_along(ind_list), function(i) {
m = methylation_hooks$meth[ind_list[[i]], sample_id[i]]
if(!is.null(methylation_hooks$cov)) {
cov = methylation_hooks$cov[ind_list[[i]], sample_id[i]]
l = cov == 0
l[is.na(l)] = TRUE
m[l] = NA
}
m
})
current_cov_list = lapply(seq_along(ind_list), function(i) {
cov = methylation_hooks$cov[ind_list[[i]], sample_id[i]]
cov[cov == 0] = NA
cov[cov > max_cov] = NA
log10(cov)
})
message(qq("on average there are @{round(mean(sapply(current_meth_list, function(x) sum(is.na(x)))))} CpG without coverage information."))
if(by_chr) {
# it can be for some chromosomes, no CpG sites are sampled
try(od <- mat_dist(current_meth_list, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = qq("methylation:@{chr}"), range = meth_range, ylab = "methylation"))
if(plot_cov) try(mat_dist(current_cov_list, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = qq("coverage:@{chr}"), range = c(0, log10(max_cov)), ylab = qq("log10(CpG coverage, 1~@{max_cov})")))
}
meth_list = lapply(seq_along(current_meth_list), function(i) {
c(meth_list[[i]], current_meth_list[[i]])
})
cov_list = lapply(seq_along(cov_list), function(i) {
c(cov_list[[i]], current_cov_list[[i]])
})
}
if(!by_chr) {
meth_list = lapply(meth_list, function(meth) {
n = length(meth)
if(n > 100000) {
meth[sample(n, 100000)]
} else {
meth
}
})
cov_list = lapply(cov_list, function(cov) {
n = length(cov)
if(n > 100000) {
cov[sample(n, 100000)]
}
})
od = mat_dist(meth_list, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = "methylation", range = meth_range, ylab = "methylation")
if(plot_cov) mat_dist(cov_list, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = "coverage", range = c(0, log10(max_cov)), ylab = qq("log10(CpG coverage, 1~@{max_cov})"))
return(invisible(od))
}
} else {
meth_mat = NULL
cov_mat = NULL
for(chr in chromosome) {
methylation_hooks$set_chr(chr, verbose = FALSE)
meth_gr = methylation_hooks$gr
if(!is.null(background)) {
mtch = as.matrix(findOverlaps(meth_gr, background))
ind = unique(mtch[, 1])
} else {
ind = seq_len(length(meth_gr))
}
nr = length(ind)
if(is.null(p) || by_chr) p = min(c(3000, nr))/nr
ind = ind[sample(c(FALSE, TRUE), nr, replace = TRUE, prob = c(1-p, p))]
message(qq("random sampled @{length(ind)} sites from @{nr} sites on @{chr} (with p = @{sprintf('%.1e', p)})"))
mm = methylation_hooks$meth[ind, sample_id]
if(!is.null(methylation_hooks$cov)) {
cm = methylation_hooks$cov[ind, sample_id]
l = cm == 0
l[is.na(l)] = TRUE
mm[l] = NA
}
cm[cm == 0] = NA
cm[cm > max_cov] = NA
message(qq("on average there are @{round(mean(apply(mm, 2, function(x) sum(is.na(x)))))} CpG without coverage information."))
meth_mat = rbind(meth_mat, mm)
cov_mat = rbind(cov_mat, cm)
if(by_chr) {
try(od <- mat_dist(mm, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = qq("methylation:@{chr}"), range = meth_range, ylab = "methylation"))
if(plot_cov) try(mat_dist(log10(cm), reorder_column = FALSE, od = od, subgroup = subgroup, ha = ha, title = qq("coverage:@{chr}"), range = c(0, log10(max_cov)), ylab = qq("log10(CpG coverage, 1~@{max_cov})")))
}
}
if(!by_chr) {
nr = nrow(meth_mat)
if(nr > 100000) {
meth_mat = meth_mat[sample(nr, 100000), ]
cov_mat = cov_mat[sample(nr, 100000), ]
}
od = mat_dist(meth_mat, reorder_column = reorder_column, subgroup = subgroup, ha = ha, title = "methylation", range = meth_range, ylab = "methylation")
if(plot_cov) mat_dist(log10(cov_mat), reorder_column = FALSE, od = od, subgroup = subgroup, ha = ha, title = "coverage", range = c(0, log10(max_cov)), ylab = qq("log10(CpG coverage, 1~@{max_cov})"))
return(invisible(od))
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.