ttmap_sgn_genes: Gives a list of associated genes per cluster

Description Usage Arguments Details Value Author(s) Examples

Description

ttmap_sgn_genes function

Usage

1
2
3
4
5
6
7
   
    ttmap_sgn_genes(ttmap_part2_gtlmap, ttmap_part1_hda,
    ttmap_part1_ctrl_adj, c, n = 2, a = 0, 
    filename = "TEST2", annot = ttmap_part1_ctrl_adj$tag.pcl, 
    col = "NAME", path = getwd(), Relaxed = 1)
    ttmap_sgn_genes_inter2(q, ttmap_part1_hda, alpha = 0)
    ttmap_sgn_genes_inter(q, ttmap_part1_hda, alpha = 0)

Arguments

ttmap_part2_gtlmap

output of ttmap

ttmap_part1_hda

output of hyperrectangle_deviation_assessment

ttmap_part1_ctrl_adj

output of control_adjustment

c

annotation file of the samples

n

column to give the name to the cluster

a

cutoff to be considered different than noise

filename

Name of the files

annot

annotation file

col

which column should be considered to annotate the features

path

where to put the output files

Relaxed

If Relaxed then one allows sample to be as the control and for all the others in one cluster to be going in the same direction (more than alpha) otherwise all the features must be deviating to be considered a significant feature

q

The sample in one cluster

alpha

cutoff to be considered different than noise inherited by a

Details

Is giving per cluster the features that vary in the same direction

Value

generates a file per cluster of significant features with an annotation

Author(s)

Rachel Jeitziner

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    ##--
    library(airway)
    data(airway)
    airway <- airway[rowSums(assay(airway))>80,]
    assay(airway) <- log(assay(airway)+1,2)
    ALPHA <- 1
    the_experiment <- TTMap::make_matrices(airway,
    seq_len(4), seq_len(4) + 4,
    rownames(airway), rownames(airway))
    TTMAP_part1prime <-TTMap::control_adjustment(
    normal.pcl = the_experiment$CTRL,
    tumor.pcl = the_experiment$TEST, 
    normalname = "The_healthy_controls", 
    dataname = "Effect_of_cancer", 
    org.directory = tempdir(), e = 0, P = 1.1, B = 0);
    Kprime <- 4;
    TTMAP_part1_hda <-
    TTMap::hyperrectangle_deviation_assessment(x = 
    TTMAP_part1prime,
    k = Kprime,dataname = "Effect_of_cancer",
    normalname = "The_healthy_controls");
    annot <- c(paste(colnames(
    the_experiment$TEST[,-(seq_len(3))]),"Dis", sep = "."),
    paste(colnames(the_experiment$CTRL[, 
    -seq_len(3)]), "Dis", sep = "."))
    annot <- cbind(annot, annot)
    rownames(annot)<-annot[, 1]
    dd5_sgn_only <-TTMap::generate_mismatch_distance(
    TTMAP_part1_hda,
    select=rownames(TTMAP_part1_hda$Dc.Dmat), alpha = ALPHA)
    TTMAP_part2 <-
    TTMap::ttmap(TTMAP_part1_hda, TTMAP_part1_hda$m,
    select = rownames(TTMAP_part1_hda$Dc.Dmat), annot,
    e = TTMap::calcul_e(dd5_sgn_only, 0.95, TTMAP_part1prime, 1), 
    filename = "first_comparison", n =  1, dd = dd5_sgn_only)
    TTMap::ttmap_sgn_genes(TTMAP_part2, TTMAP_part1_hda, 
    TTMAP_part1prime, annot,
    n = 2, a = 1, filename = "first_list_of_genes",
    annot = TTMAP_part1prime$tag.pcl, col = "NAME", 
    path = getwd(), Relaxed = 1)

jeitziner/TTMap documentation built on May 23, 2019, 4:24 p.m.