# This file is automatically generated, you probably don't want to edit this
anovaNPOptions <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaNPOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
deps = NULL,
group = NULL,
es = FALSE,
pairs = FALSE, ...) {
super$initialize(
package="jmv",
name="anovaNP",
requiresData=TRUE,
...)
private$..deps <- jmvcore::OptionVariables$new(
"deps",
deps,
required=TRUE,
suggested=list(
"continuous",
"ordinal"))
private$..group <- jmvcore::OptionVariable$new(
"group",
group,
required=TRUE,
rejectUnusedLevels=TRUE,
suggested=list(
"nominal",
"ordinal"),
permitted=list(
"factor"))
private$..es <- jmvcore::OptionBool$new(
"es",
es,
default=FALSE)
private$..pairs <- jmvcore::OptionBool$new(
"pairs",
pairs,
default=FALSE)
self$.addOption(private$..deps)
self$.addOption(private$..group)
self$.addOption(private$..es)
self$.addOption(private$..pairs)
}),
active = list(
deps = function() private$..deps$value,
group = function() private$..group$value,
es = function() private$..es$value,
pairs = function() private$..pairs$value),
private = list(
..deps = NA,
..group = NA,
..es = NA,
..pairs = NA)
)
anovaNPResults <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaNPResults",
inherit = jmvcore::Group,
active = list(
table = function() private$.items[["table"]],
comparisons = function() private$.items[["comparisons"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="One-Way ANOVA (Non-parametric)")
self$add(jmvcore::Table$new(
options=options,
name="table",
title="Kruskal-Wallis",
rows="(deps)",
clearWith=list(
"group"),
columns=list(
list(
`name`="name",
`title`="",
`content`="($key)",
`type`="text"),
list(
`name`="chiSq",
`title`="\u03C7\u00B2",
`type`="number"),
list(
`name`="df",
`title`="df",
`type`="integer"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"),
list(
`name`="es",
`title`="\u03B5\u00B2",
`type`="number",
`visible`="(es)"))))
self$add(jmvcore::Array$new(
options=options,
name="comparisons",
title="Dwass-Steel-Critchlow-Fligner pairwise comparisons",
items="(deps)",
visible="(pairs)",
clearWith=list(
"group"),
template=jmvcore::Table$new(
options=options,
title="Pairwise comparisons - $key",
rows=0,
clearWith=NULL,
columns=list(
list(
`name`="p1",
`title`="",
`content`=".",
`type`="text"),
list(
`name`="p2",
`title`="",
`content`=".",
`type`="text"),
list(
`name`="W",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue")))))}))
anovaNPBase <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaNPBase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = "jmv",
name = "anovaNP",
version = c(1,0,0),
options = options,
results = anovaNPResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = TRUE,
requiresMissings = FALSE,
weightsSupport = 'auto')
}))
#' One-Way ANOVA (Non-parametric)
#'
#' The Kruskal-Wallis test is used to explore the relationship between a
#' continuous dependent variable, and a categorical explanatory variable. It
#' is analagous to ANOVA, but with the advantage of being non-parametric and
#' having fewer assumptions. However, it has the limitation that it can only
#' test a single explanatory variable at a time.
#'
#'
#' @examples
#' data('ToothGrowth')
#'
#' anovaNP(formula = len ~ dose, data=ToothGrowth)
#'
#' #
#' # ONE-WAY ANOVA (NON-PARAMETRIC)
#' #
#' # Kruskal-Wallis
#' # -------------------------------
#' # X² df p
#' # -------------------------------
#' # len 40.7 2 < .001
#' # -------------------------------
#' #
#'
#' @param data the data as a data frame
#' @param deps a string naming the dependent variable in \code{data}
#' @param group a string naming the grouping or independent variable in
#' \code{data}
#' @param es \code{TRUE} or \code{FALSE} (default), provide effect-sizes
#' @param pairs \code{TRUE} or \code{FALSE} (default), perform pairwise
#' comparisons
#' @param formula (optional) the formula to use, see the examples
#' @return A results object containing:
#' \tabular{llllll}{
#' \code{results$table} \tab \tab \tab \tab \tab a table of the test results \cr
#' \code{results$comparisons} \tab \tab \tab \tab \tab an array of pairwise comparison tables \cr
#' }
#'
#' Tables can be converted to data frames with \code{asDF} or \code{\link{as.data.frame}}. For example:
#'
#' \code{results$table$asDF}
#'
#' \code{as.data.frame(results$table)}
#'
#' @export
anovaNP <- function(
data,
deps,
group,
es = FALSE,
pairs = FALSE,
formula) {
if ( ! requireNamespace("jmvcore", quietly=TRUE))
stop("anovaNP requires jmvcore to be installed (restart may be required)")
if ( ! missing(formula)) {
if (missing(deps))
deps <- jmvcore::marshalFormula(
formula=formula,
data=`if`( ! missing(data), data, NULL),
from="lhs",
required=TRUE)
if (missing(group))
group <- jmvcore::marshalFormula(
formula=formula,
data=`if`( ! missing(data), data, NULL),
from="rhs",
subset="1")
}
if ( ! missing(deps)) deps <- jmvcore::resolveQuo(jmvcore::enquo(deps))
if ( ! missing(group)) group <- jmvcore::resolveQuo(jmvcore::enquo(group))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(deps), deps, NULL),
`if`( ! missing(group), group, NULL))
for (v in group) if (v %in% names(data)) data[[v]] <- as.factor(data[[v]])
options <- anovaNPOptions$new(
deps = deps,
group = group,
es = es,
pairs = pairs)
analysis <- anovaNPClass$new(
options = options,
data = data)
analysis$run()
analysis$results
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.