figure.timeseries.snowcrab.habitat = function(p ) {
td = bio.snowcrab::interpolation.db( p=p, DS="fishable.biomass.timeseries" )
areas = c("cfa4x", "cfasouth", "cfanorth" )
regions = c("4X", "S-ENS", "N-ENS")
td$region = factor(td$region, levels=areas, labels=regions)
td$sa = td$sa.region
td = td[is.finite(td$sa) ,]
td$sa = td$sa / 1000
td = td[order(td$region, td$yr),]
xlim=range(td$yr); xlim[1]=xlim[1]-0.5; xlim[2]=xlim[2]+0.5
fn = file.path( p$annual.results, "timeseries", "interpolated", "snowcrab.habitat.sa" )
outdir = dirname( fn )
dir.create( outdir, recursive=T, showWarnings=F )
png( filename=paste(fn, "png", sep="."), width=3072, height=2304, pointsize=40, res=300 )
setup.lattice.options()
pl = xyplot( sa~yr|region, data=td,
layout=c(1,3), xlim=xlim, scales = list(y = "free"),
main="Potential snow crab habitat", xlab="Year", ylab=expression("Surface area; X 10^3 km^2"),
panel = function(x, y, subscripts, ...) {
panel.abline(h=mean(y, na.rm=T), col="gray40", lwd=1.5,...)
panel.xyplot(x, y, type="b", pch=19, lwd=1.5, lty="11", col="black", ...)
# panel.loess(x,y, span=0.15, lwd=2.5, col="darkblue", ... )
}
)
print(pl)
dev.off()
means = tapply(td$sa, td$region, mean, na.rm=T)
print("mean annual SA X 1000 km^2")
print(means)
print("SD:")
print( tapply(td$sa, td$region, sd, na.rm=T))
print( "latest year:" )
print( td$sa[ td$yr==p$year.assessment ])
# table.view( td )
return( fn )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.