pagoda.top.aspects | R Documentation |
Evaluates statistical significance of the gene set and cluster lambda1 values, returning either a text table of Z scores, etc, a structure containing normalized values of significant aspects, or a set of genes underlying the significant aspects.
pagoda.top.aspects(pwpca, clpca = NULL, n.cells = NULL,
z.score = qnorm(0.05/2, lower.tail = FALSE), return.table = FALSE,
return.genes = FALSE, plot = FALSE, adjust.scores = TRUE,
score.alpha = 0.05, use.oe.scale = FALSE, effective.cells.start = NULL)
pwpca |
output of pagoda.pathway.wPCA() |
clpca |
output of pagoda.gene.clusters() (optional) |
n.cells |
effective number of cells (if not provided, will be determined using pagoda.effective.cells()) |
z.score |
Z score to be used as a cutoff for statistically significant patterns (defaults to 0.05 P-value |
return.table |
whether a text table showing |
return.genes |
whether a set of genes driving significant aspects should be returned |
plot |
whether to plot the cv/n vs. dataset size scatter showing significance models |
adjust.scores |
whether the normalization of the aspect patterns should be based on the adjusted Z scores - qnorm(0.05/2, lower.tail = FALSE) |
score.alpha |
significance level of the confidence interval for determining upper/lower bounds |
use.oe.scale |
whether the variance of the returned aspect patterns should be normalized using observed/expected value instead of the default chi-squared derived variance corresponding to overdispersion Z score |
effective.cells.start |
starting value for the pagoda.effective.cells() call |
if return.table = FALSE and return.genes = FALSE (default) returns a list structure containing the following items:
xv a matrix of normalized aspect patterns (rows- significant aspects, columns- cells
xvw corresponding weight matrix
gw set of genes driving the significant aspects
df text table with the significance testing results
data(pollen)
cd <- clean.counts(pollen)
knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10)
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var = 5, n.cores = 1, plot = FALSE)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
tam <- pagoda.top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.