pagoda.cluster.cells | R Documentation |
Determines cell clustering (hclust result) based on a weighted correlation of genes underlying the top aspects of transcriptional heterogeneity. Branch orientation is optimized if 'cba' package is installed.
pagoda.cluster.cells(tam, varinfo, method = "ward.D",
include.aspects = FALSE, verbose = 0, return.details = FALSE)
tam |
result of pagoda.top.aspects() call |
varinfo |
result of pagoda.varnorm() call |
method |
clustering method ('ward.D' by default) |
include.aspects |
whether the aspect patterns themselves should be included alongside with the individual genes in calculating cell distance |
verbose |
0 or 1 depending on level of desired verbosity |
return.details |
Boolean of whether to return just the hclust result or a list containing the hclust result plus the distance matrix and gene values |
hclust result
data(pollen)
cd <- clean.counts(pollen)
knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10)
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var = 5, n.cores = 1, plot = FALSE)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
tam <- pagoda.top.aspects(pwpca, return.table = TRUE, plot=FALSE, z.score=1.96) # top aspects based on GO only
hc <- pagoda.cluster.cells(tam, varinfo)
plot(hc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.