R/heatmap.r

Defines functions aqm.heatmap

Documented in aqm.heatmap

## heatmap
aqm.heatmap = function(x, ...)
{
  colorRange = rgb(seq(0, 1, l=256),
                   seq(0, 1, l=256),
                   seq(1, 0, l=256))

  m   = dist2(x$M)
  out = outliers(m, method = "sum")
  out@description = c("sum of distances to other arrays <i>S<sub>a</sub></i>", "data-driven")

  dend = as.dendrogram(hclust(as.dist(m), method = "single"))
  ord = order.dendrogram(dend)

  colnames(m) = rownames(m) = paste0(ifelse(seq_len(x$numArrays) %in% out@which, "* ", ""),
                                    seq_len(x$numArrays))

  ## Shall we draw a dendrogram?
  haveDend = (ncol(m) <= arrayQualityMetricsGlobalParameters$maxNumberOfArraysForDrawingDendrogram)
  if (haveDend)
    {
      theLegend = list(right = list(fun=dendrogramGrob, args=list(x=dend, side="right")))
      fillOrd   = seq_len(x$numArrays)   ## no reordering of the colors in the 'fill' part of 'rects' (see below) is needed
    } else {
      theLegend = NULL
      fillOrd   = ord
    }

  ## Shall we draw side bars?
  maxNrColors = 0  ## the maximum number of sidebar colors used - this value is used below for the layout
  ng = length(x$intgroup)
  if(ng > 0) {
    palettes = c("Set1", "Set2", "Set3", "Accent", "Dark2", "Paired", "Pastel1", "Pastel2")
    stopifnot(all(palettes %in% rownames(brewer.pal.info)))
    palettes = rep(palettes, ceiling(ng/length(palettes))) ## make sure there are enough palettes, recycle if needed

    key = rects = vector(mode="list", length=ng)
    names(rects) = rep("rect", ng)

    for(i in seq_len(ng))
      {
        colors = brewer.pal(brewer.pal.info[palettes[i], "maxcolors"], palettes[i])
        fac  = factor(x$pData[[x$intgroup[i]]])
        fac  = maximumLevels(fac, n = length(colors)) ## make sure that factor has at most n levels
        colors = colors[seq_len(nlevels(fac))]

        key[[i]] =  list(rect = list(col = colors),
                         text = list(levels(fac)))
        rects[[i]] = list(col = "transparent",
                          fill = colors[as.integer(fac)[fillOrd]],
                          type = "rectangle")
        if(length(colors)>maxNrColors)
          maxNrColors = length(colors)
      }


    key = unlist(key, recursive=FALSE)
    key$rep = FALSE
    thekey = draw.key(key = key)

    if (haveDend)
      {
        theLegend$right$args = append(theLegend$right$args,
          list(size.add = 1, add = rects))
      } else {
        ## adapted from 'latticeExtra:dendrogramGrob'
        lay = grid.layout(nrow = 1, ncol = ng,
            heights = unit(1, "null"),
            widths = unit(rep(1, length = ng), rep("lines", ng)), respect = FALSE)
        g = frameGrob(layout = lay)
        dy = 1/x$numArrays
        y  = seq_len(x$numArrays)*dy
        for (i in seq_len(ng))
          {
            g = placeGrob(g,
              rectGrob(y = y, height = dy, vjust = 1,
                       gp = do.call(gpar, rects[[i]])), row = 1, col = i)
          }
        idem = function(x) x
        theLegend = list(right=list(fun=idem, args=list(x=g)))
      }

  } else {
    thekey = NULL
  } ## if (ng>0)

  hfig = levelplot(m[ord,ord],
    scales = list(x=list(rot=90)),
    legend = theLegend,
    colorkey = list(space ="left"),
    xlab = "",
    ylab = "",
    col.regions = colorRange,
    main = thekey)

  nout = length(out@which)

  legend = paste0("The figure <!-- FIG --> shows a false color heatmap of the distances between arrays. ",
    "The color scale is chosen to cover the range of distances encountered in the dataset. ",
    "Patterns in this plot can indicate clustering of the arrays either because of intended biological or ",
    "unintended experimental factors (batch effects). ",
    "The distance <i>d<sub>ab</sub></i> between two arrays <i>a</i> and <i>b</i> is computed as the mean absolute difference ",
    "(L<sub>1</sub>-distance) between the data of the arrays (using the data from all probes without filtering). ",
    "In formula, <i>d<sub>ab</sub></i> = mean | <i>M<sub>ai</sub> - M<sub>bi</sub></i> |, ",
    "where <i>M<sub>ai</sub></i> is the value of the <i>i</i>-th probe on the <i>a</i>-th array. ",
    "Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, ",
    "<i>S<sub>a</sub></i> = &Sigma;<sub><i>b</i></sub> <i>d<sub>ab</sub></i> was exceptionally large. ",
    if(nout>0) paste(if(nout>1) paste(nout, "such arrays were detected, and they are") else
                     "One such array was detected, and it is", "marked by an asterisk, *.") else
                        "No such arrays were detected.")

  new("aqmReportModule",
      plot      = hfig,
      section   = "Between array comparison",
      title     = "Distances between arrays",
      id        = "hm",
      legend    = legend,
      size      = c(w = 5 + x$numArrays * 0.075, h = 3 + x$numArrays * 0.075 + maxNrColors * 0.2),
      colors    = x$arrayColors,
      outliers  = out)
}
grimbough/arrayQualityMetrics documentation built on May 3, 2019, 4:06 p.m.