calcPPS <- function(xset, isotopeIdentification=c("IPO", "CAMERA"), ...) {
isotopeIdentification <- match.arg(isotopeIdentification)
ret <- vector(mode="numeric", 5) #array(0, dim=c(1,5))
names(ret) <- c("ExpId", "#peaks", "#NonRP", "#RP", "PPS")
if(is.null(xset)) {
return(ret)
}
if(nrow(peaks_IPO(xset)) == 0) {
return(ret)
}
peak_source <- peaks_IPO(xset)[,c("mz", "rt", "sample", "into", "mzmin",
"mzmax", "rtmin", "rtmax"),drop=FALSE]
ret[2] <- nrow(peak_source)
if(isotopeIdentification == "IPO")
iso_mat <- findIsotopes.IPO(xset, ...)
else
iso_mat <- findIsotopes.CAMERA(xset, ...)
samples <- unique(peak_source[,"sample"])
isotope_abundance = 0.01108
#calculating low intensity peaks
for(sample in samples) {
non_isos_peaks <- peak_source
if(nrow(iso_mat) > 0) {
non_isos_peaks <- peak_source[-unique(c(iso_mat)),,drop=FALSE]
}
speaks <- non_isos_peaks[non_isos_peaks[,"sample"]==sample,,drop=FALSE]
intensities <- speaks[,"into"]
na_int <- is.na(intensities)
intensities <- intensities[!na_int]
if(length(intensities)>0) {
tmp <- intensities[order(intensities)]
int_cutoff <- mean(tmp[1:max(round((length(tmp)/33),0),1)])
masses <- speaks[!na_int, "mz"]
#floor((masses-2*CH3)/CH2) + 2
maximum_carbon <- calcMaximumCarbon(masses)
carbon_probabilty <- maximum_carbon*isotope_abundance
iso_int <- intensities * carbon_probabilty
not_loq_peaks <- sum(iso_int>int_cutoff)
ret[3] <- ret[3] + not_loq_peaks
}
}#end_for_sample
ret[4] <- length(unique(c(iso_mat)))
if(ret[3] == 0) {
ret[5] <- (ret[4]+1)^2/(ret[3]+1)
} else {
ret[5] <- ret[4]^2/ret[3]
}
return(ret)
}
findIsotopes.IPO <-
function(xset, checkPeakShape=c("none", "borderIntensity", "sinusCurve",
"normalDistr")) {
checkPeakShape <- match.arg(checkPeakShape)
iso_mat <- matrix(0, nrow=0, ncol=2)
if(is.null(xset)) {
return(iso_mat)
}
colnames(iso_mat) <- c("12C", "13C")
peak_source <- peaks_IPO(xset)[,c("mz", "rt", "sample", "into", "maxo", "mzmin",
"mzmax", "rtmin", "rtmax"), drop=FALSE]
for(i in 1:ncol(peak_source)) {
peak_source <- peak_source[!is.na(peak_source[,i]),,drop=FALSE]
}
peak_source <- cbind(1:nrow(peak_source), peak_source)
colnames(peak_source)[1] <- "id"
#carbon = 12.0
#hydrogen = 1.0078250170
#CH3 = carbon + 3 * hydrogen
#CH2 = carbon + 2 * hydrogen
isotope_mass = 1.0033548
isotope_abundance = 0.01108
samples <- max(peak_source[,"sample"])
#start_sample
for(sample in 1:samples) {
#only looking into peaks from current sample
speaks <- peak_source[peak_source[,"sample"]==sample,,drop=FALSE]
split <- 250
if(!(checkPeakShape=="none"))
rawdata <- loadRaw(xcmsSource(filepaths(xset)[sample]))
if(nrow(speaks)>1) {
#speaks <- speaks[,-c("sample")]
speaks <- speaks[order(speaks[,"mz"]),]
while(!is.null(nrow(speaks)) & length(speaks) > 3) {
part_peaks <- NULL
#splitting the data into smaller pieces to improve speed
if(nrow(speaks) < split) {
part_peaks <- speaks
} else {
upper_bound <- speaks[split,"mzmax"] + isotope_mass
end_point <- sum(speaks[,"mz"] < upper_bound)
part_peaks <- speaks[1:end_point,,drop=FALSE]
}
rt <- part_peaks[,"rt"]
rt_window <- rt * 0.005
rt_lower <- part_peaks[,"rt"] - rt_window
rt_upper <- part_peaks[,"rt"] + rt_window
rt_matrix <-
t(matrix(rep(rt, nrow(part_peaks)), ncol=nrow(part_peaks)))
rt_matrix_bool <- rt_matrix >= rt_lower & rt_matrix <= rt_upper
mz <- part_peaks[,"mz"]
#isotope_masses - mz_window
mz_lower <- part_peaks[,"mzmin"] + isotope_mass
#isotope_masses + mz_window
mz_upper <- part_peaks[,"mzmax"] + isotope_mass
mz_matrix <-
t(matrix(rep(mz, nrow(part_peaks)), ncol=nrow(part_peaks)))
mz_matrix_bool <- mz_matrix >= mz_lower & mz_matrix <= mz_upper
rt_mz_matrix_bool <- rt_matrix_bool & mz_matrix_bool
rt_mz_peak_ids <- which(rowSums(rt_mz_matrix_bool)>0)
calculations <- min(split, nrow(speaks))
rt_mz_peak_ids <- rt_mz_peak_ids[rt_mz_peak_ids < calculations]
for(i in rt_mz_peak_ids) {
current <- part_peaks[i, ,drop=FALSE]
rt_mz_peaks <- part_peaks[rt_mz_matrix_bool[i,],,drop=FALSE]
rt_difference <-
abs(current[,"rt"] - rt_mz_peaks[, "rt"]) / current[,"rt"]
rt_mz_peaks <- cbind(rt_mz_peaks, rt_difference)
#test intensity_window
#floor((current["mz"]-2*CH3)/CH2) + 2
maximum_carbon <- calcMaximumCarbon(current[,"mz"])
carbon_probabilty <- c(1,maximum_carbon)*isotope_abundance
iso_intensity <- current[,"into"] * carbon_probabilty
int_bools <-
rt_mz_peaks[,"into"] >= iso_intensity[1] &
rt_mz_peaks[,"into"] <= iso_intensity[2]
if(sum(int_bools) > 0) {
int_peaks <- rt_mz_peaks[int_bools,,drop=FALSE]
boundary_bool <- rep(TRUE, (nrow(int_peaks)+1))
if(!(checkPeakShape=="none")) {
if(checkPeakShape=="borderIntensity") {
boundary_bool <- checkIntensitiesAtRtBoundaries(
rawdata,
rbind(current,int_peaks[,-ncol(int_peaks), drop=FALSE]))
} else {
if(checkPeakShape=="sinusCurve") {
boundary_bool <- checkSinusDistribution(
rawdata,
rbind(current,int_peaks[,-ncol(int_peaks),drop=FALSE]))
} else {
boundary_bool <- checkNormalDistribution(
rawdata,
rbind(current,int_peaks[,-ncol(int_peaks),drop=FALSE]))
}
}
} #else {
#boundary_bool <- rep(TRUE, (nrow(int_peaks)+1))
#}
if(boundary_bool[1] & sum(boundary_bool[-1])>0) {
iso_peaks <- int_peaks[boundary_bool[-1],,drop=FALSE]
iso_id <-
iso_peaks[which.min(iso_peaks[,"rt_difference"]), "id"]
#iso_list[[length(iso_list)+1]] <- c(current[,"id"], iso_id)
iso_mat <- rbind(iso_mat, c(current[,"id"], iso_id))
}
}
}
speaks <- speaks[-(1:calculations),]
}#end_while_sample_peaks
}
}
return(iso_mat)
}
# checking intensities at rtmin and rtmax. peaks[,"maxo"] must be at least
# double as high does not work for retention time corrected data
checkIntensitiesAtRtBoundaries <-
function(rawdata,
peaks,
minBoundaryToMaxo=1/3,
ppmstep=15) {
ret <- rep(TRUE, nrow(peaks))
for(i in 1:nrow(peaks)) {
peak <- peaks[i,]
for(boundary in c("rtmin", "rtmax")) {
rtIndex <- which(rawdata$rt==peak[boundary])
if(length(rtIndex)>0) {
if(rtIndex==length(rawdata$scanindex)) {
rtIndices <- c(rawdata$scanindex[rtIndex], length(rawdata$mz))
} else {
rtIndices <- rawdata$scanindex[c(rtIndex, rtIndex+1)]
}
#only relevant mz and intensity values regarding retention time
mz <- rawdata$mz[(rtIndices[1]+1):rtIndices[2]]
intensities <- rawdata$intensity[(rtIndices[1]+1):rtIndices[2]]
ppm <- peak[c("mzmin", "mzmax")]*ppmstep/1000000
mzIntensities <-
c(0, intensities[mz>=peak["mzmin"]-ppm[1] & mz<=peak["mzmax"]+ppm[2]])
maxBoundaryIntensity <- max(mzIntensities)
ret[i] <- ret[i] & maxBoundaryIntensity<peak["maxo"]*minBoundaryToMaxo
}
}
}
return(ret)
}
checkSinusDistribution <- function(rawdata, peaks) {
ret <- rep(TRUE, nrow(peaks))
for(i in 1:nrow(peaks)) {
ret[i] <- testSinusDistribution(rawdata, peaks[i,,drop=FALSE])
}
return(ret)
}
checkNormalDistribution <- function(rawdata, peaks) {
ret <- rep(TRUE, nrow(peaks))
for(i in 1:nrow(peaks)) {
ret[i] <- testNormalDistribution(rawdata, peaks[i,,drop=FALSE])
}
return(ret)
}
getIntensitiesFromRawdata <- function(rawdata, peak) {
rt <- rawdata$rt >= peak[,"rtmin"] & rawdata$rt <= peak[,"rtmax"]
rtRange <- c(min(which(rt)), max(which(rt))+1)
scanIndices <-
rawdata$scanindex[rtRange[1]:min(rtRange[2], length(rawdata$scanindex))]
# scanIndices <- scanIndices[!is.na(scanIndices)]
if(rtRange[2]>length(rawdata$scanindex)) {
scanIndices <- c(scanIndices, length(rawdata$intensity))
}
if(length(scanIndices) < 3)
return(FALSE)
y <- c()
for(i in 1:(length(scanIndices)-1)) {
scanRange <- c(scanIndices[i]+1, scanIndices[i+1])
mz <- rawdata$mz[scanRange[1]:scanRange[2]]
y <-
c(y,
max(0, (rawdata$intensity[scanRange[1]:scanRange[2]][
mz >= peak[,"mzmin"] & mz <= peak[,"mzmax"]])
)
)
}
y
}
testNormalDistribution <- function(rawdata, peak) {
y <- getIntensitiesFromRawdata(rawdata, peak)
if(length(y) < 3) {
return(FALSE)
}
if(max(y)==0) {
return(FALSE)
}
normY <- (y-min(y))/(max(y)-min(y))
mean=10;
sd=3;
seqModel <- seq(-4,4,length=length(normY))*sd + mean
yModel <- dnorm(seqModel,mean,sd)
yModel = yModel* (1/max(yModel))
correlation <- cor(yModel, normY)
correlation > 0.7
}
testSinusDistribution <- function(rawdata, peak) {
y <- getIntensitiesFromRawdata(rawdata, peak)
if(length(y) < 3) {
return(FALSE)
}
if(max(y)==0) {
return(FALSE)
}
normY <- (y-min(y))/(max(y)-min(y))
sinCurve <- (sin(seq(-pi/2,pi+1.5,length=length(normY))) + 1) / 2
correlation <- cor(sinCurve, normY)
correlation > 0.7
}
findIsotopes.CAMERA <-
function(xset, ...) {
iso_mat <- matrix(0, nrow=0, ncol=2)
if(is.null(xset)) {
return(iso_mat)
}
ids <- peaks_IPO(xset)[,"sample", drop=FALSE]
ids <- cbind(1:length(ids), ids)
xsets <- split(xset, unique(peaks_IPO(xset)[,"sample"]))
samples <- unique(peaks_IPO(xset)[,"sample"])
for(sample in samples) {
an <- xsAnnotate(xset, sample=sample)
isos <- findIsotopes(an, ...)@isoID[,c("mpeak", "isopeak"), drop=FALSE]
#start_id <- ids[ids[,2]==sample,,drop=FALSE][1,1] - 1
iso_mat <- rbind(iso_mat, matrix(ids[ids[,2]==sample,1][isos], ncol=2))
}
iso_mat
}
calcMaximumCarbon <-
function(masses) {
carbon = 12.0
hydrogen = 1.0078250170
CH3 = carbon + 3 * hydrogen
CH2 = carbon + 2 * hydrogen
maximum_carbon <- floor((masses-2*CH3)/CH2) + 2
}
calculateXcmsSet <- function(files,
xcmsSetParameters,
scanrange = NULL,
task = 1,
BPPARAM = bpparam(),
nSlaves = 0) {
if (nSlaves != 0) {
warning("Use of xcmsSet-argument 'nSlaves' is deprecated!",
" Please use 'BPPARAM' instead.")
}
xset <- NULL
if (is.null(xcmsSetParameters$step)) {
# centWave
xset <-
xcms::xcmsSet(
files = files,
method = "centWave",
peakwidth = c(xcmsSetParameters$min_peakwidth[task],
xcmsSetParameters$max_peakwidth[task]),
ppm = xcmsSetParameters$ppm[task],
noise = xcmsSetParameters$noise[task],
snthresh = xcmsSetParameters$snthresh[task],
mzdiff = xcmsSetParameters$mzdiff[task],
prefilter = c(
xcmsSetParameters$prefilter[task],
xcmsSetParameters$value_of_prefilter[task]
),
mzCenterFun = xcmsSetParameters$mzCenterFun[task],
integrate = xcmsSetParameters$integrate[task],
fitgauss = xcmsSetParameters$fitgauss[task],
verbose.columns =
xcmsSetParameters$verbose.columns[task],
BPPARAM = BPPARAM,
scanrange = scanrange#,
#nSlaves = nSlaves * xcmsSetParameters$nSlaves[task]
)
} else {
#matchedFilter
try({
suppressMessages({
xset <-
xcms::xcmsSet(
files = files,
method = "matchedFilter",
fwhm = xcmsSetParameters$fwhm[task],
snthresh = xcmsSetParameters$snthresh[task],
step = xcmsSetParameters$step[task],
steps = xcmsSetParameters$steps[task],
sigma = xcmsSetParameters$sigma[task],
max = xcmsSetParameters$max[task],
mzdiff = xcmsSetParameters$mzdiff[task],
index = xcmsSetParameters$index[task],
BPPARAM = BPPARAM,
scanrange = scanrange#,
#nSlaves = nSlaves * xcmsSetParameters$nSlaves[task]
)
})
})
}
return(xset)
}
checkXcmsSetParams <-
function(params) {
if(is.null(params$step)) { # centWave
quantitative_parameters <-
c("ppm", "min_peakwidth", "max_peakwidth", "snthresh",
"mzdiff", "noise", "prefilter", "value_of_prefilter")
qualitative_parameters <-
c("integrate", "fitgauss", "verbose.columns", "mzCenterFun")
unsupported_parameters <-
c("sleep", "ROI.list") # "scanrange" can only be set,
# but not optimized
} else {
quantitative_parameters <-
c("fwhm", "sigma", "max", "snthresh", "step", "steps", "mzdiff")
qualitative_parameters <-
c("index")
unsupported_parameters <-
c("sleep")
}
checkParams(params, quantitative_parameters, qualitative_parameters,
unsupported_parameters)
}
getDefaultXcmsSetStartingParams <-
function(method=c("centWave", "matchedFilter")) {
method <- match.arg(method)
if(method=="centWave")
return(list(min_peakwidth = c(12,28),
max_peakwidth = c(35,65),
ppm = c(17,32),
mzdiff = c(-0.001, 0.01),
snthresh = 10,
noise = 0,
prefilter = 3,
value_of_prefilter = 100,
mzCenterFun = "wMean",
integrate = 1,
fitgauss = FALSE,
verbose.columns = FALSE#,
#nSlaves = 0
))
if(method=="matchedFilter")
return(list(fwhm = c(25,35),
snthresh = c(3,17),
step = c(0.05, 0.15),
steps = c(1,3),
sigma = 0,
max = 5,
mzdiff = 0,
index = FALSE#,
#nSlaves = 0
))
}
optimizeSlaveCluster <-
function(task,
xcmsSet_parameters,
files,
scanrange,
isotopeIdentification,
BPPARAM = bpparam(),
...) {
message(task)
#library(xcms)
xset <- NULL
#message(sapply(xcmsSet_parameters, "[[", task))
xset <-
calculateXcmsSet(
files = files,
xcmsSetParameters = xcmsSet_parameters,
scanrange = scanrange,
task = task,
BPPARAM = BPPARAM
)
result <- calcPPS(xset, isotopeIdentification, ...)
result[1] <- task
rm(xset)
result
}
optimizeXcmsSet <- function(files = NULL,
params = getDefaultXcmsSetStartingParams(),
isotopeIdentification = c("IPO", "CAMERA"),
BPPARAM = bpparam(),
nSlaves = 4,
subdir = "IPO",
plot = TRUE,
...) {
scanrange <- params$scanrange
params$scanrange <- NULL
checkXcmsSetParams(params)
if (!is.numeric(nSlaves)) {
warning("'nSlaves' must be numeric! Setting it to 1.")
nSlaves <- 1
}
# check conflict between IPO's nSlaves argument and xcms BPPARAM argument
# note: both types of parallelisation cannot be used together
if ((bpworkers(BPPARAM) > 1) & (nSlaves > 1)) {
warning("IPO (nSlaves-argument) and xcms (BPPARAM-argument) ",
"parallelisation cannot be used together! ",
"Setting nSlaves to 1")
nSlaves <- 1
}
if (!is.null(params$nSlaves)) {
if (nSlaves != 0) {
warning("Use of xcmsSet-argument 'nSlaves' is deprecated!",
" Please use 'BPPARAM' instead.")
}
}
if(is.null(files)) {
files <- getwd()
}
isotopeIdentification <- match.arg(isotopeIdentification)
# only matchedFilter-method has parameter fwhm
centWave <- is.null(params$fwhm)
history <- list()
iterator = 1
best_range <- 0.25
if (isTRUE(plot) & !is.null(subdir))
if (!file.exists(subdir))
dir.create(subdir)
while(iterator < 50) { #dummy stop :-)
message("\n\n")
message("starting new DoE with:")
message(paste(rbind(paste(names(params), sep="", ": "),
paste(params, sep="", "\n")),sep=""))
xcms_result <-
xcmsSetExperimentsCluster(
example_sample = files,
params = params,
scanrange = scanrange,
isotopeIdentification = isotopeIdentification,
BPPARAM = BPPARAM,
nSlaves = nSlaves,
...
)
xcms_result <-
xcmsSetStatistic(
files = files,
scanrange = scanrange,
isotopeIdentification = isotopeIdentification,
BPPARAM = BPPARAM,
xcms_result = xcms_result,
subdir = subdir,
plot = plot,
iterator = iterator,
#nSlaves = nSlaves,
...
)
history[[iterator]] <- xcms_result
params <- xcms_result$params
if(!resultIncreased(history)) {
message("no increase, stopping")
maxima <- 0
max_index <- 1
for(i in 1:length(history)) {
if(history[[i]]$max_settings[1] > maxima) {
maxima <- history[[i]]$max_settings[1]
max_index <- i
}
}
xcms_parameters <-
as.list(decodeAll(history[[max_index]]$max_settings[-1],
history[[max_index]]$params$to_optimize))
xcms_parameters <- combineParams(xcms_parameters,
params$no_optimization)
if(!is.list(xcms_parameters))
xcms_parameters <- as.list(xcms_parameters)
best_settings <- list()
best_settings$parameters <- xcms_parameters
best_settings$xset <- history[[max_index]]$xset
#calcPPS(xset, isotopeIdentification, ...)#, ppm, rt_diff)
target_value <- history[[max_index]]$PPS
best_settings$result <- target_value
history$best_settings <- best_settings
message("best parameter settings:")
message(paste(rbind(paste(names(xcms_parameters),
sep="", ": "),
paste(xcms_parameters, sep="", "\n")), sep=""))
return(history)
}
for(i in 1:length(params$to_optimize)) {
parameter_setting <- xcms_result$max_settings[i+1]
bounds <- params$to_optimize[[i]]
fact <- names(params$to_optimize)[i]
min_factor <-
ifelse(fact=="min_peakwidth", 3,
ifelse(fact=="mzdiff",
ifelse(centWave,-100000000, 0.001),
ifelse(fact=="step",0.0005,1)))
# - if the parameter is NA, we increase the range by 20%,
# - if it was within the inner 25% of the previous range or
# at the minimum value we decrease the range by 20%
step_factor <-
ifelse(is.na(parameter_setting), 1.2,
ifelse((abs(parameter_setting) < best_range),
0.8,
ifelse(parameter_setting==-1 &
decode(-1, params$to_optimize[[i]]) ==
min_factor, 0.8, 1)))
step <- (diff(bounds) / 2) * step_factor
if(is.na(parameter_setting))
parameter_setting <- 0
new_center <- decode(parameter_setting, bounds)
if((new_center-min_factor) > step) {
new_bounds <- c(new_center - step, new_center + step)
} else {
new_bounds <- c(min_factor, 2*step+min_factor)
}
names(new_bounds) <- NULL
if(names(params$to_optimize)[i] == "steps" |
names(params$to_optimize)[i] == "prefilter") {
params$to_optimize[[i]] <- round(new_bounds, 0)
} else {
params$to_optimize[[i]] <- new_bounds
}
}
if(centWave) {
#checking peakwidths plausiability
if(!is.null(params$to_optimize$min_peakwidth) |
!is.null(params$to_optimize$max_peakwidth)) {
pw_min <-
ifelse(is.null(params$to_optimize$min_peakwidth),
params$no_optimization$min_peakwidth,
max(params$to_optimize$min_peakwidth))
pw_max <-
ifelse(is.null(params$to_optimize$max_peakwidth),
params$no_optimization$max_peakwidth,
min(params$to_optimize$max_peakwidth))
if(pw_min >= pw_max) {
additional <- abs(pw_min-pw_max) + 1
if(!is.null(params$to_optimize$max_peakwidth)) {
params$to_optimize$max_peakwidth <-
params$to_optimize$max_peakwidth + additional
} else {
params$no_optimization$max_peakwidth <-
params$no_optimization$max_peakwidth + additional
}
}
}
}
params <- attachList(params$to_optimize, params$no_optimization)
iterator <- iterator + 1
}
params <- attachList(params$to_optimize, params$no_optimization)
return(history)
}
resultIncreased <-
function(history) {
index = length(history)
if(history[[index]]$PPS["PPS"] == 0 & index == 1)
stop(paste("No isotopes have been detected,",
"peak picking not optimizable by IPO!"))
if(index < 2)
return(TRUE)
if(history[[index-1]]$PPS["PPS"] >= history[[index]]$PPS["PPS"])
return(FALSE)
return(TRUE)
}
xcmsSetExperimentsCluster <-
function(example_sample,
params,
scanrange,
isotopeIdentification,
BPPARAM = bpparam(),
nSlaves=4,
...) {
typ_params <- typeCastParams(params)
if(length(typ_params$to_optimize)>1) {
design <- getCcdParameter(typ_params$to_optimize)
xcms_design <- decode.data(design)
} else {
design <- data.frame(run.order=1:9, a=seq(-1,1,0.25))
colnames(design)[2] <- names(typ_params$to_optimize)
xcms_design <- design
xcms_design[,2] <-
seq(min(typ_params$to_optimize[[1]]),
max(typ_params$to_optimize[[1]]),
diff(typ_params$to_optimize[[1]])/8)
}
xcms_design <- combineParams(xcms_design, typ_params$no_optimization)
tasks <- 1:nrow(design)
if(nSlaves > 1) {
# unload snow (if loaded) to prevent conflicts with usage of
# package 'parallel'
if('snow' %in% rownames(installed.packages()))
unloadNamespace("snow")
cl_type<-getClusterType()
cl <- parallel::makeCluster(nSlaves, type = cl_type)
response <- matrix(0, nrow=length(design[[1]]), ncol=5)
#exporting all functions to cluster but only calcPPS and toMatrix are needed
ex <- Filter(function(x) is.function(get(x, asNamespace("IPO"))),
ls(asNamespace("IPO")))
if(identical(cl_type,"PSOCK")) {
message("Using PSOCK type cluster, this increases memory requirements.")
message("Reduce number of slaves if you have out of memory errors.")
message("Exporting variables to cluster...")
parallel::clusterEvalQ(cl, library("xcms"))
parallel::clusterExport(cl, ex, envir = asNamespace("IPO"))
}
response <- parallel::parSapply(
cl = cl,
X = tasks,
FUN = optimizeSlaveCluster,
xcmsSet_parameters = xcms_design,
files = example_sample,
scanrange = scanrange,
isotopeIdentification = isotopeIdentification,
BPPARAM = BPPARAM,
...,
USE.NAMES = FALSE
)
parallel::stopCluster(cl)
} else {
response <-
sapply(
X = tasks,
FUN = optimizeSlaveCluster,
xcmsSet_parameters = xcms_design,
files = example_sample,
scanrange = scanrange,
isotopeIdentification = isotopeIdentification,
BPPARAM = BPPARAM,
...
)
}
response <- t(response)
colnames(response) <- c("exp", "num_peaks", "notLLOQP", "num_C13", "PPS")
response <- response[order(response[,1]),]
ret <- list()
ret$params <- typ_params
ret$design <- design
ret$response <- response
return(ret)
}
xcmsSetStatistic <-
function(files,
scanrange,
isotopeIdentification,
BPPARAM = bpparam(),
xcms_result,
subdir,
plot,
iterator,
#nSlaves,
...) {
params <- xcms_result$params
resp <- xcms_result$response[, "PPS"]
model <- createModel(xcms_result$design, params$to_optimize, resp)
xcms_result$model <- model
max_settings <- getMaximumLevels(xcms_result$model)
# plotting rms
tmp <- max_settings[1,-1] # first row without response
tmp[is.na(tmp)] <- 1 # if Na (i.e. -1, and 1), show +1
if (isTRUE(plot) & length(tmp) > 1) {
if (!is.null(subdir)) {
plotContours(
model = xcms_result$model,
maximum_slice = tmp,
plot_name = file.path(subdir, paste("rsm_", iterator, sep = ""))
)
} else if (is.null(subdir)) {
plotContours(xcms_result$model, tmp, plot_name = NULL)
}
}
xcms_result$max_settings <- max_settings
xcms_parameters <-
as.list(decodeAll(max_settings[-1], params$to_optimize))
xcms_parameters <-
combineParams(xcms_parameters, params$no_optimization)
if(!is.list(xcms_parameters))
xcms_parameters <- as.list(xcms_parameters)
xset <-
calculateXcmsSet(
files = files,
xcmsSetParameters = xcms_parameters,
scanrange = scanrange,
task = 1,
BPPARAM = BPPARAM#,
#nSlaves = nSlaves
)
xcms_result$xset <- xset
xcms_result$PPS <- calcPPS(xset, isotopeIdentification, ...)
return(xcms_result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.