deepSNV-methods: Test two matched deep sequencing experiments for...

deepSNVR Documentation

Test two matched deep sequencing experiments for low-frequency SNVs.

Description

This generic function can handle different types of inputs for the test and control experiments. It either reads from two .bam files, uses two matrices of nucleotide counts, or re-evaluates the test results from a deepSNV-class object. The actual test is a likelihood ratio test of a (beta-)binomial model for the individual nucleotide counts on each position under the hypothesis that both experiments share the same parameter, and the alternative that the parameters differ. Because the difference in degrees of freedom is 1, the test statistic D = -2 \log \max{L_0}/\max{L_1} is asymptotically distributed as χ_1^2. The statistic may be tuned by a nucleotide specific Dirichlet prior that is learned across all genomic sites, see estimateDirichlet. If the model is beta-binomial, a global dispersion parameter is used for all sites. It can be learned with estimateDispersion.

Usage

deepSNV(test, control, ...)

## S4 method for signature 'matrix,matrix'
deepSNV(test,control, alternative = c('greater', 'less', 'two.sided'), dirichlet.prior = NULL, pseudo.count=1, combine.method = c("fisher", "max", "average"), over.dispersion = 100, model = c("bin", "betabin"), ...)

## S4 method for signature 'deepSNV,missing'
deepSNV(test, control, ...)

## S4 method for signature 'character,character'
deepSNV(test, control, regions, q=25, s=2, head.clip=0, ...)

## S4 method for signature 'matrix,character'
deepSNV(test, control, regions, q=25, s=2, ...)

## S4 method for signature 'character,matrix'
deepSNV(test, control, regions, q=25, s=2, ...)

Arguments

test

The test experiment. Either a .bam file, or a matrix with nucleotide counts, or a deepSNV-class object.

control

The control experiment. Must be of the same type as test, or missing if test is a deepSNV-class object.

...

Additional arguments.

alternative

The alternative to be tested. One of greater, less, or two.sided.

dirichlet.prior

A base-sepecific Dirichlet prior specified as a matrix. Default NULL.

pseudo.count

If dirichlet.prior=NULL, a pseudocount can be used to define a flat prior.

combine.method

The method to combine p-values. One of "fisher" (default), "max", or "average". See p.combine for details.

over.dispersion

A numeric factor for the over.dispersion, if the model is beta-binomial. Default 100.

model

Which model to use. Either "bin", or "betabin". Default "bin".

regions

The regions to be parsed if test and control are .bam files. Either a data.frame with columns "chr" (chromosome), "start", "stop", or a GRanges object. If multiple regions are specified, the appropriate slots of the returned object are concatenated by row.

q

The quality arguement passed to bam2R if the experiments are .bam files.

s

The strand argument passed to bam2R if the experiments are .bam files.

head.clip

The head.clip argument passed to bam2R if the experiments are .bam files.

Value

A deepSNV object

Author(s)

Moritz Gerstung

Examples

## Short example with 2 SNVs at frequency ~10%
regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 3120, stop=3140)
ex <- deepSNV(test = system.file("extdata", "test.bam", package="deepSNV"), control = system.file("extdata", "control.bam", package="deepSNV"), regions=regions, q=10)
show(ex)   # show method
plot(ex)   # scatter plot
summary(ex)   # summary with significant SNVs
ex[1:3,]   # subsetting the first three genomic positions
tail(test(ex, total=TRUE))   # retrieve the test counts on both strands
tail(control(ex, total=TRUE))

## Not run: Full example with ~ 100 SNVs. Requires an internet connection, but try yourself.
# regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)
# HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam", control = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/control.bam", regions=regions, q=10)
data(HIVmix) # attach data instead..
show(HIVmix)
plot(HIVmix)
head(summary(HIVmix))


gerstung-lab/deepSNV documentation built on June 3, 2022, 3:05 p.m.