R/additionalFunctions.R

Defines functions is.even range01 NSCA .cluster.stat NSCACluster .formattingObj overlapC .repThr .freqMatrix .limmaSubsamp .statCalc .LIMMAcalc .combCalc .combCalcM jColor .analysisType overlapFeature subsamplingProb cophDECO distFunc innerProductAssign AnnotateDECO quantSD localMaxima localMinima .createTempFile .timestamp

Documented in AnnotateDECO

########################################################################################################### Intern functions ##########

# Printing messages

.timestamp <- function() format(Sys.time(), " %H:%M:%S")

# Temporary directory

.createTempFile <- function() {
    uniqueName <- unlist(strsplit(tempfile(pattern = "DECO_temp"), split = "//"))[2]
    
    uniqueName <- paste(unlist(strsplit(uniqueName, split = "/")), collapse = "_")
    
    temp.path <- paste(getwd(), "/", uniqueName, sep = "")
    
    dir.create(temp.path)
    
    return(temp.path)
}

################################################ localMinima and localMaxima

localMinima <- function(x) {
    y <- diff(c(.Machine$integer.max, x)) > 0L
    rle(y)$lengths
    y <- cumsum(rle(y)$lengths)
    y <- y[seq.int(1L, length(y), 2L)]
    if (x[[1]] == x[[2]]) {
        y <- y[-1]
    }
    
    return(y)
}

localMaxima <- function(x) {
    y <- diff(c(-.Machine$integer.max, x)) > 0L
    rle(y)$lengths
    y <- cumsum(rle(y)$lengths)
    y <- y[seq.int(1L, length(y), 2L)]
    if (x[[1]] == x[[2]]) {
        y <- y[-1]
    }
    
    return(y)
}

################################################ Calculate quantile threshold per standard deviation

quantSD <- function(sdx, p = NULL) {
    if (is.null(p)) {
        p <- 0.75
    }
    if (quantile(sdx, probs = p) <= median(range(sdx))) {
        thr <- quantile(sdx, probs = p)
    } else {
        thr <- median(sdx)
    }
    return(thr)
}

################################################ AnnotateDECO

AnnotateDECO <- function(ids, id.type, attributes = NA, pack.db = "Homo.sapiens", 
    rm.redundant = TRUE, verbose = FALSE) {
    if (!exists(pack.db)) {
        stop("ERROR: Annotation package '", pack.db, "' is not in library.")
    } else {
        requireNamespace(pack.db, quietly = TRUE)
    }
    
    if (verbose) {
        message(.timestamp(), "-- Annotating IDs with Bioconductor...")
    }
    
    if (all(is.na(attributes))) {
        attributes <- c("SYMBOL", "ENSEMBL", "ENTREZID", "TXCHROM", 
            "GENENAME")
    }
    
    if (id.type == "PROBEID") {
        xx <- as.list(get(paste(unlist(strsplit(pack.db, split = ".db")), 
            "ENSEMBL", sep = "")))
        
        infogenes <- suppressMessages(AnnotationDbi::select(x = get(pack.db), 
            obj = names(xx), columns = c(attributes, id.type), keys = keys(get(pack.db), 
                keytype = "ENSEMBL"), keytype = "ENSEMBL"))
    } else {
        infogenes <- suppressMessages(AnnotationDbi::select(x = get(pack.db), 
            obj = ids, columns = attributes, keys = keys(get(pack.db), keytype = id.type), 
            keytype = id.type))
    }
    
    infogenes <- infogenes[apply(infogenes[, attributes], 1, function(x) all(!is.na(x))), 
        ]
    
    if (all(is.na(infogenes))) {
        stop("Annotation library does not found input IDs.")
    }
    
    infogenes <- infogenes[order(infogenes[, id.type]), ]
    infogenes <- infogenes[infogenes[, id.type] %in% ids, ]
    
    if (rm.redundant) {
        infogenes <- infogenes[!(duplicated(infogenes[, id.type])), ]
        rownames(infogenes) <- infogenes[, id.type]
        
        if (verbose) {
            message(.timestamp(), "-- Removed duplicated info from IDs.")
        }
    }
    return(infogenes)
}

############################## innerProductAssign

innerProductAssign <- function(inner, samples = NA, control = NA, analysis) {
    samples <- samples[names(inner)]
    if (analysis == "Binary") {
        res <- 0
        inner0 <- inner
        for (j in seq_len(length(table(samples)))) {
            if (j == 1) {
                inner <- inner0[names(samples[samples == control])]
            } else {
                inner <- inner0[names(samples[samples != control])]
            }
            
            error <- try(expr = {
                d <- density.lf(x = as.matrix(inner))
            }, silent = TRUE)
            if (inherits(error, "try-error")) {
                d <- density(x = inner)
            }
            x <- d$x[localMaxima(d$y)]
            
            error <- try(expr = {
                p <- kmeans(inner, centers = x)
            }, silent = TRUE)
            if (inherits(error, "try-error")) {
                error <- try(expr = {
                  p <- kmeans(inner, centers = length(x) - 1, nstart = 10)
                }, silent = TRUE)
            }
            
            res <- c(res, p$cluster + max(res))
        }
        res <- res[2:length(res)]
        res <- res[order(res, inner0)]
    } else {
        error <- try(expr = {
            d <- density.lf(x = as.matrix(inner))
        }, silent = TRUE)
        if (inherits(error, "try-error")) {
            d <- density(x = inner)
        }
        x <- d$x[localMaxima(d$y)]
        
        error <- try(expr = {
            p <- kmeans(inner, centers = x)
        }, silent = TRUE)
        if (inherits(error, "try-error")) {
            error <- try(expr = {
                p <- kmeans(inner, centers = length(x), nstart = 10)
            }, silent = TRUE)
        }
        res <- p$cluster[order(p$cluster, inner)]
    }
    return(list(cl = res, centroid = x))
}

############################## Distance function with correlation

distFunc <- function(x, use = "pairwise.complete.obs", cor.method = "pearson") {
    co.x <- cor(x, use = use, method = cor.method)
    dist.co.x <- 1 - co.x
    return(as.dist(dist.co.x))
}


############################## Cophenetic correlation and clustering dendogram

cophDECO <- function(data, method.heatmap = "ward.D", k = NULL, scale = FALSE, 
    verbose = TRUE, coph = TRUE) {
    if (is.null(method.heatmap)) {
        method.heatmap <- c("ward.D", "ward.D2", "single", "complete", "average", 
            "mcquitty", "median", "centroid")
    }
    
    if (scale) {
        data <- scale(data)
    }
    
    d <- distFunc(x = as.matrix(data), cor.method = "pearson")
    d[is.na(d)] <- 0
    
    if (coph) {
        hmet <- vapply(method.heatmap, function(x) {
            sampleTree <- as.dendrogram(hclust(d, method = x))
            coph <- cor(c(d), c(cophenetic(sampleTree)), method = "pearson")
        }, FUN.VALUE = numeric(1))
    } else {
        hmet <- rep(1, length(method.heatmap))
        names(hmet) <- method.heatmap
    }
    
    sampleTree <- hclust(d, method = names(hmet[order(hmet, decreasing = TRUE)])[1])
    sampleTree$height <- sampleTree$height[order(sampleTree$height)]
    
    if (is.null(k)) {
        p <- c()
        for (i in 2:(dim(data)[2] - 1)) {
            cutt <- cutree(sampleTree, k = i)
            p[i - 1] <- .cluster.stat(d = d, clustering = cutt)$pearsongamma
        }
        p <- unlist(na.omit(p))
        cutt <- cutree(sampleTree, k = which(p == max(p)) + 1)
    } else {
        cutt <- cutree(sampleTree, k = k)
        p <- .cluster.stat(d = d, clustering = cutt)$pearsongamma
        if (verbose) {
            message(.timestamp(), "-- NOTE: Number of 'k' subclasses defined
              by user have been settle down.")
        }
    }
    return(list(dend = sampleTree, coph = hmet, cluster = cutt, huber = max(p)))
}


############################## probability subsampling

subsamplingProb <- function(x, iter, n1, n2 = 0) {
    if (n2 > 0) {
        p1o <- x/n1
        p2o <- x/n2
        
        m <- p1o * p2o
        
        r1 <- choose(n1, x)
        r2 <- choose(n2, x)
        
        m1 <- m * p2o * iter
        m2 <- m * p1o * iter
        
        m12 <- m * (p2o * p1o)^(x - 1)
        
        all <- r1 * r2
    } else {
        p1o <- x/n1
        r1 <- choose(n1, x)
        m <- 0
        all <- r1
    }
    return(list(prob.s = m, prob.comb = iter/all, n.all = all))
}


############################## Overlapping omic signal

overlapFeature <- function(id, data, classes, control, analysis, infoS = NA, 
    plot = FALSE) {
    if (analysis == "Binary") {
        da <- density.lf(as.matrix(data[id, names(classes[classes == control])]), 
            from = range(data)[1], to = range(data)[2], n = 1000, width = 1)
        db <- density.lf(as.matrix(data[id, names(classes[classes != control])]), 
            from = range(data)[1], to = range(data)[2], n = 1000, width = 1)
        d <- data.frame(x = da$x, a = da$y, b = db$y)
        
        # calculate intersection densities
        d$w <- pmin(d$a, d$b)
        
        # integrate areas under curves
        total <- integrate.xy(d$x, d$a) + integrate.xy(d$x, d$b)
        intersection <- integrate.xy(d$x, d$w)
        col <- adjustcolor(c("navyblue", "darkred"), alpha.f = 0.3)
        pos <- 2:dim(d)[2]
        txt <- c("Control", "Case")
    }
    if (analysis == "Multiclass") {
        d <- vapply(levels(classes), function(x) {
            error <- try(expr = {
                d <- density.lf(as.matrix(data[id, names(classes[classes == 
                  x])]), from = range(data)[1], to = range(data)[2], n = 1000, 
                  width = 1)$y
            }, silent = TRUE)
            if (inherits(error, "try-error")) {
                d <- density(as.numeric(data[id, names(classes[classes == 
                  x])]), n = 1000)$y
            }
            return(d)
        }, FUN.VALUE = numeric(1000))
        error <- try(expr = {
            x <- density.lf(as.matrix(data[id, names(classes[classes == levels(classes)[1]])]), 
                from = range(data)[1], to = range(data)[2], n = 1000, width = 1)$x
        }, silent = TRUE)
        if (inherits(error, "try-error")) {
            x <- density(as.numeric(data[id, names(classes[classes == levels(classes)[1]])]), 
                n = 1000)$x
        }
        w <- apply(apply(expand.grid(levels(classes), levels(classes)), 1, 
            function(y) pmin(d[, y[1]], d[, y[2]])), 1, max)
        d <- data.frame(d, x = x, w = w)
        total <- sum(vapply(seq_len(length(levels(classes))), function(y) integrate.xy(d$x, 
            d[, y]), FUN.VALUE = numeric(1)))^2
        intersection <- integrate.xy(d$x, d$w)
        
        pos <- seq_len(length(levels(classes)))
        col <- adjustcolor(colorRampPalette(c("navyblue", "darkorange", "darkred", 
            "darkgreen"))(length(levels(classes))), alpha.f = 0.3)
        txt <- levels(classes)
    }
    # compute overlap coefficient
    overlap <- length(levels(classes)) * intersection/total
    
    if (plot) {
        par(mar = c(10, 6, 10, 8))
        stackpoly.2(x = d[, pos], col = col, border = "grey", axis1 = TRUE, 
            stack = FALSE, lwd = 1, lty = 3, xaxlab = round(d[seq(1, dim(d)[1], 
                dim(d)[1] * 0.05), "x"], 1), xat = seq(1, dim(d)[1], dim(d)[1] * 
                0.05), xlab = "Raw Data Signal", ylab = "Density", main = paste("Overlap:", 
                round(overlap, 3), "\nLikelihood density estimation, bandwidth = 1"))
        legend("topright", legend = txt, pch = 15, cex = 1.5, pt.cex = 1.5, 
            col = col, bty = "n")
    }
    
    return(overlap)
}


############################## 
############################## 

.analysisType <- function(deco){
  ## Type of analysis run
  if(length(NSCAcluster(deco)) == 1 & all(is.na(deco@classes)))
    analysis <- "Unsupervised" 
  if(length(NSCAcluster(deco)) == 1 & any(!is.na(deco@classes)))
    analysis <- "Multiclass" 
  if(length(NSCAcluster(deco)) > 1)
    analysis <- "Binary" 
  
  return(analysis)
}


############################## Colors assignment
############################## 

jColor <- function(info) {
    info <- as.matrix(info)
    nam <- rownames(info)
    double <- c("black", "gold", "ivory3", "cornflowerblue", "chocolate", 
        "honeydew1")
    
    colnames(info) <- paste(rev(LETTERS[seq_len(dim(info)[2])]), ": ", colnames(info), 
        sep = "")
    for (j in seq_len(dim(info)[2])) info[, j] <- paste(rev(LETTERS[seq_len(dim(info)[2])])[j], 
        ": ", as.character(info[, j]), sep = "")
    rownames(info) <- nam
    info.sample.color <- info
    info.sample.color <- apply(info.sample.color, 2, as.character)
    if (dim(info)[2] > 1) {
        pos <- apply(info, 2, unique)
        if (is.matrix(pos)) {
            pos <- rep(dim(pos)[1] == 2, dim(pos)[2])
        } else {
            pos <- lapply(pos, length) == 2
        }
    } else {
        pos <- dim(apply(info, 2, unique))[1] <= 2
    }
    ty <- sort(unlist(apply(info[, !pos, drop = FALSE], 2, unique)))
    tyy <- sort(unlist(apply(info[, pos, drop = FALSE], 2, unique)))
    myPalette <- c(RColorBrewer::brewer.pal(name = "Set1", n = 9)[seq_len(6)], "white", 
        RColorBrewer::brewer.pal(name = "Set1", n = 9)[8:9], "black")
    if (length(ty) > 10) {
        myPalette <- colorRampPalette(myPalette)(length(unlist(apply(info, 
            2, unique))))
    }
    if (length(which(pos)) < dim(info)[2]) {
        for (z in seq_len(length(ty))) {
            info.sample.color[info %in% ty[z]] <- as.character(rep(myPalette[z], 
                length(info.sample.color[info == unlist(apply(info, 2, unique))[z]])))
            names(ty)[z] <- unique(as.character(rep(myPalette[z], length(info.sample.color[info == 
                unlist(apply(info, 2, unique))[z]]))))
        }
    }
    rownames(info.sample.color) <- nam
    ty <- c(tyy, ty)
    if (any(pos)) {
        for (j in seq_len((length(which(pos)) * 2))) info.sample.color[info == 
            ty[j]] <- rep(double, 10)[j]
        names(ty)[seq_len(j)] <- rep(double, 10)[seq_len(j)]
    }
    
    return(list(orig = info, col = info.sample.color, ty = ty))
}


################################# Combinatorial calculation considering multiclass experimental design

.combCalcM <- function(data, classes, control, iterations, multi, r, results) {
    if (!(all(names(classes) %in% colnames(data))) | is.null(names(classes))) {
        stop("ERROR: Names of samples in classes
         vector not match with data.")
    }
    
    classes <- sort(as.factor(classes))
    
    # Calculating maximal resampling size per class
    if (is.null(r) || r <= 0) {
      r <- round(sqrt(min(table(classes))), digits = 0)
    }
    if(r < 3)
      r <- 3
    
    # If multiclass vector has been proposed:
    if (length(levels(classes)) > 2) {
        control <- NA
        combMulti <- t(combn(levels(classes), 2))
        
        # Removing auto-combination
        combMulti <- combMulti[combMulti[, 1] != combMulti[, 2], ]
        
        maxSub <- subsamplingProb(x = r, n1 = min(table(classes)), iter = 0)$n.all
        if (iterations == 0) {
            iterations <- maxSub
        }
        if (is.na(maxSub)) {
            stop("ERROR: Resampling size is higher than minimum class size.")
        }
        multIter <- round(iterations/dim(combMulti)[1], 0)
        if (multIter > maxSub) {
            multIter <- maxSub
        }
        message(" NOTE: More than two classes of samples.\n
            Multiclass analysis must run ", 
            dim(combMulti)[1], " (or multiple) iterations at least:\n ", multIter * 
                dim(combMulti)[1], " random iterations (", multIter, " rounds) will be calculated.\n")
        
        c1 <- apply(combMulti, 1, function(y) names(classes[classes == y[1]]))
        c2 <- apply(combMulti, 1, function(y) names(classes[classes == y[2]]))
        combi <- matrix(data = 0, ncol = 2 * r, nrow = 1)
        
        # Calculating combinations of samples without mixing classes.
        for (i in seq_len(multIter)) {
            if (is.list(c1)) {
                combi1 <- matrix(unlist(lapply(c1, function(x) which(colnames(data) %in% 
                  sample(x, size = r, replace = FALSE)))), ncol = r, byrow = TRUE)
                combi2 <- matrix(unlist(lapply(c2, function(x) which(colnames(data) %in% 
                  sample(x, size = r, replace = FALSE)))), ncol = r, byrow = TRUE)
            } else {
                combi1 <- t(apply(c1, 2, function(x) which(colnames(data) %in% 
                  sample(x, size = r, replace = FALSE))))
                combi2 <- t(apply(c2, 2, function(x) which(colnames(data) %in% 
                  sample(x, size = r, replace = FALSE))))
            }
            combi <- rbind(combi, cbind(combi1, combi2))
        }
        results <- cbind(combi[2:dim(combi)[1], ], 
                         nFeatures = c(rep(0, multIter * dim(combMulti)[1])))
        colnames(results) <- c(seq_len(2 * r), "nFeatures")
        n1 <- dim(data)[2]
        n2 <- min(table(classes))
        cl1 <- NA
        cl2 <- NA
        categories.control <- seq_len(dim(data)[2])
        categories.case <- seq_len(dim(data)[2])
        multi <- TRUE
    } else {
        # Binary contrast. 'Control' label defines '0' class for eBayes algorithm.
        if (is.na(control)) {
            cl1 <- levels(classes)[1]
            cl2 <- levels(classes)[2]
            control <- cl1
        } else {
            if (!(control %in% levels(classes))) {
                stop("Control label not found in vector classes provided.")
            }
            cl1 <- control
            cl2 <- levels(classes)[which(levels(classes) != control)]
        }
        n1 <- length(which(classes == cl1))
        n2 <- length(which(classes == cl2))
        classes <- classes[c(which(classes == cl1), which(classes == cl2))]
        
        # Maximum number of iterations
        maxSub <- prod(factorial(c(n1, n2))/(factorial(r) * factorial(c(n1, 
            n2) - r)))
        
        if(is.nan(maxSub)) {
            maxSub <- 1e9
            message(.timestamp(), " -- Maximum number of iterations is defined as ", 
                    maxSub, ".")
        }

        if (iterations > maxSub) {
            iterations <- maxSub
            message(.timestamp(), " -- 'iterations' is higher than
              maximum number of combinations of samples.
              Number of 'iterations' will be changed to ", 
                maxSub, ".")
        }
        data <- data[, names(classes)]
        categories.control <- seq_len(n1)
        categories.case <- (n1 + 1):(n1 + n2)
        message("\n Classes vector defined as input.
            SUPERVISED analysis will be carry out.\n")
    }
    
    return(list(categories.control = categories.control, data = data, categories.case = categories.case, 
        results = results, multi = multi, classes = classes, cl1 = cl1, cl2 = cl2, iterations = iterations,
        n1 = n1, n2 = n2))
}


################################# Combinatorial calculation

.combCalc <- function(iterations, multi, classes, r, results, categories.control, 
    categories.case, n1, n2) {
    cont <- 0
    user <- "n"
    # Asking for number of iterations if it was not defined.
    if (iterations == 0 || is.null(iterations) & !multi) {
        n.all <- subsamplingProb(x = r, iter = 1000, n1 = n1, n2 = n2)$n.all
        user <- readline(prompt = message("\n All possible combinations:", 
            n.all, "\n Run ALL combinations? (y/n):"))
        if (user == "n") {
            iterations <- as.integer(readline(prompt = message("\n Define number of random combinations to calculate:")))
            if (!(is.integer(iterations))) {
                stop("Non-integer argument passed as number of combinations.")
            }
        }
    }
    # Calculate random or all possible combinations between samples if
    # 'binary', 'multiclass' or 'unsupervised' has been proposed.
    if (user == "y" & !multi) {
        allCombControl <- combn(n1, r)
        allCombCase <- combn(n2, r)
        nSamples <- nrow(allCombControl) + nrow(allCombCase)
        ncomb <- ncol(allCombControl) * ncol(allCombCase)
        results <- matrix(nrow = ncomb, ncol = nSamples)
        colnames(results) <- seq_len(nSamples)
        cont <- 1
        
        # Building combination matrix.
        for (iCombCONTROL in seq_len(ncol(allCombControl))) {
            for (iCombCASE in seq_len(ncol(allCombCase))) {
                samples <- c(categories.control[allCombControl[, iCombCONTROL]], 
                  categories.case[allCombCase[, iCombCASE]])
                if (length(which(duplicated(samples))) > 0) {
                  samples[duplicated(samples)] <- sample(which(!(seq_len(n1 + 
                    n2) %in% samples)), 1)
                }
                results[cont, seq_len(nSamples)] <- samples
                cont <- cont + 1
            }
        }
        results <- cbind(results, nFeatures = c(rep(0, ncomb)))
        msg <- paste(.timestamp(), "-- Number of total iterations:", ncomb)
    } else if (!multi) {
        results <- matrix(nrow = iterations, ncol = 2 * r + 1)
        colnames(results) <- c(seq(from = 1, to = 2 * r), "nFeatures")
        # Building combination matrix.
        for (i in seq_len(iterations)) {
            if (all(!(is.na(classes)))) {
                results[i, seq_len(r)] <- sample(categories.control, r, replace = FALSE)
                results[i, (r + 1):(2 * r)] <- sample(categories.case, r, 
                  replace = FALSE)
            } else {
                results[i, seq_len(r * 2)] <- sample(categories.control, 2 * 
                  r, replace = FALSE)
            }
        }
        results[, c("nFeatures")] <- 0
        msg <- paste(.timestamp(), "-- Randomly selected", iterations, "iterations.")
    } else {
        msg <- paste(.timestamp(), "-- Number of total iterations:", dim(results)[1])
    }
    
    message(msg)
    
    return(results)
}

################################# Internal LIMMA calculations

.LIMMAcalc <- function(data, results, classes, control, 
    q.val, call, r, temp.path,  
    bpparam, multi, n1, n2) {
    # Creating final variable containing all subsampling results.
    res <- list(data = as.matrix(data), results = results, subStatFeature = NULL, 
        incidenceMatrix = NULL, classes = classes, resampleSize = r, control = control, 
        pos.iter = 0, q.val = q.val, call = call)
    
    # Some variables definition to parallel subsampling.
    top_eje <- matrix(ncol = 7)
    colnames(top_eje) <- c("logFC", "AveExpr", "t", "P.Value", "adj.P.Val", 
        "B", "ID")
    top_eje[, 2:7] <- 0
    UP <- as.data.frame(data)
    if (all(is.na(classes)) | multi) {
        UP[, seq_len(n1)] <- 0
    } else {
        UP[, seq_len(n1 + n2)] <- 0
    }
    DOWN <- UP
    mx <- UP
    results <- cbind(results, counter = seq(seq_len(dim(results)[1])))
    
    suppressWarnings(limma1 <- bplapply(seq_len(dim(results)[1]), FUN = .limmaSubsamp, 
        BPPARAM = bpparam, results = results[, seq_len(2 * r)], r = r, data = data, 
        q.val = q.val, temp.path = temp.path))
    
    pos <- unlist(lapply(limma1, function(x) x$pos))
    limma1 <- unlist(lapply(limma1, function(x) x$p))
    limma1 <- limma1[!(is.na(limma1))]
    
    results[, "nFeatures"] <- pos
    results <- results[, seq_len(dim(results)[2] - 1)]
    
    # Stop subsampling for non-differential signal.
    if (length(limma1) <= 1) {
        stop("NO-RESULT: Any combination shows DE features with these
          resampling size and p-value threshold.
          Try again with another parameters.")
    }
    
    return(list(res = res, limma1 = limma1, top_eje = top_eje, mx = mx, UP = UP, 
        DOWN = DOWN, results = results))
}


################################# 

.statCalc <- function(counter, tab, top_eje, ncomb, j) {
    res_ <- vector(length = 12)
    names(res_) <- colnames(tab)
    
    lines <- top_eje[as.character(top_eje[, c("ID")]) %in% as.character(tab[counter, 
        c("ID")]), ]
    
    # Statistics from this RDA step.
    if (length(lines[, c("ID")]) > 0) {
        res_[c("Avrg.logFC")] <- .colMeans(lines[, c("logFC")], m = length(lines[, 
            c("ID")]), n = 1)
        res_[c("Best.adj.P.Val")] <- lines[1, c("adj.P.Val")]
        res_[c("Repeats")] <- length(lines[, 1])
        res_[c("FR.Repeats")] <- res_[c("Repeats")]/ncomb
        res_[c("RF.Positive.Repeats")] <- res_[c("Repeats")]/j
        res_[c("Chi.Square")] <- (-2) * sum(log(lines[, c("P.Value")]))
        res_[c("P.Val.ChiSq")] <- 1 - pchisq(as.numeric(res_[c("Chi.Square")]), 
            df = 2 * length(lines[, 1]))
        res_[c("ID")] <- as.character(tab[counter, c("ID")])
    }
    
    return(res_)
}


################################# 

.limmaSubsamp <- function(counter, results, r, data, q.val, 
                          temp.path) {
    # Taking different combinations from previous matrix and running LIMMA.
    CASE <- CONTROL <- NULL
    samples <- results[counter, seq_len(r * 2)]
    design <- cbind(
      CONTROL = rep(c(1, 0), each = r), 
      CASE = rep(c(0, 1), each = r)
    ) 
    fit <- limma::lmFit(data[, samples], design)
    cont.mat <- limma::makeContrasts(CASEvsCONTROL = CASE - CONTROL, 
                                     levels = design)
    fit2 <- limma::contrasts.fit(fit, cont.mat)
    fit3 <- limma::eBayes(fit2)
    top <- limma::topTable(fit3, adjust.method = "fdr", 
                            number = nrow(data), 
                            p.value = q.val)
    pos <- dim(top)[1]
    
    # Generating intermediate files in temporary dir. If any DE feature is
    # found for any combination, no file would be created.
    resultfile <- paste(temp.path, "/", c("diff", "incid"), counter, ".dta", 
        sep = "")
    if (pos > 0) {
        top <- data.frame(top, ID = rownames(top))
        top <- top[seq_len(pos), ]
        # Differential features and incidence matrix files are separated.
        foreign::write.dta(top, file = resultfile[1])
        foreign::write.dta(as.data.frame(samples), file = resultfile[2])
    } else {
        resultfile <- c(NA, NA)
    }
    
    return(list(p = resultfile, pos = pos))
}


################################# Frequency matrix and intermediate results

.freqMatrix <- function(limmaRes, data, n1, n2, r, multi, unsup) {
    mx0 <- limmaRes$mx
    mx20 <- limmaRes$mx
    pb <- txtProgressBar(style = 3, min = 0, max = length(limmaRes$limma1) - 
        1)
    UP <- limmaRes$UP
    DOWN <- limmaRes$DOWN
    top_eje <- limmaRes$top_eje
    
    # Reading and summarizing intermediate results.
    for (i in seq(from = 1, to = length(limmaRes$limma1) - 1, by = 2)) {
        mx <- mx0
        mx2 <- mx20
        resultfile1 <- limmaRes$limma1[i]
        resultfile2 <- limmaRes$limma1[i + 1]
        if (is.matrix(limmaRes$limma1)) {
            resultfile1 <- limmaRes$limma1[1, i]
            resultfile2 <- limmaRes$limma1[2, i]
        }
        
        # Joining all differential event statistics.
        top_eje1 <- foreign::read.dta(file = resultfile1)
        colnames(top_eje1) <- colnames(top_eje)
        rownames(top_eje1) <- make.names(rep(LETTERS, dim(data)[1])[seq_len(dim(top_eje1)[1])], 
            unique = TRUE)
        samples <- as.vector(t(foreign::read.dta(file = resultfile2)))
        counter <- as.numeric(unlist(strsplit(unlist(strsplit(resultfile1, 
            split = "diff"))[2], split = ".", fixed = TRUE))[1])
        
        # Generating global incidence matrix with UP and DOWN events.
        mx[rownames(mx) %in% top_eje1[top_eje1[, c("logFC")] < 0, c("ID")], 
            samples[seq_len(r)]] <- mx[rownames(mx) %in% top_eje1[top_eje1[, 
            c("logFC")] < 0, c("ID")], samples[seq_len(r)]] + 1
        mx[rownames(mx) %in% top_eje1[top_eje1[, c("logFC")] > 0, c("ID")], 
            samples[(r + 1):(r * 2)]] <- mx[rownames(mx) %in% top_eje1[top_eje1[, 
            c("logFC")] > 0, c("ID")], samples[(r + 1):(r * 2)]] + 1
        mx2[rownames(mx2) %in% top_eje1[top_eje1[, c("logFC")] < 0, c("ID")], 
            samples[(r + 1):(r * 2)]] <- mx2[rownames(mx2) %in% top_eje1[top_eje1[, 
            c("logFC")] < 0, c("ID")], samples[(r + 1):(r * 2)]] + 1
        mx2[rownames(mx2) %in% top_eje1[top_eje1[, c("logFC")] > 0, c("ID")], 
            samples[seq_len(r)]] <- mx2[rownames(mx2) %in% top_eje1[top_eje1[, 
            c("logFC")] > 0, c("ID")], samples[seq_len(r)]] + 1
        
        UP <- UP + mx
        DOWN <- DOWN + mx2

        top_eje <- rbind(top_eje, top_eje1)
        rownames(top_eje1) <- NULL
        setTxtProgressBar(pb, i)
    }
    
    close(pb)
    
    UP <- UP[rowSums(UP) > 0, ]
    DOWN <- DOWN[rowSums(DOWN) > 0, ]
    MULTI <- UP + DOWN
    
    # Making up incidence matrix with separated UP, DOWN and MIXED events.
    if (!unsup & !multi) {
        both.feat <- names(which(rowSums(UP[, seq_len(n1)]) > 0 & rowSums(UP[, 
            (n1 + 1):(n1 + n2)]) > 0))
        if (length(both.feat) > 0) {
            both.feat.mx <- UP[rowSums(UP) > 0, ][rownames(UP) %in% both.feat, 
                ]
            rownames(both.feat.mx) <- paste(rownames(both.feat.mx), sep = "deco", 
                "UP")
            UP <- UP[!(rownames(UP) %in% both.feat), ]
            DOWN <- DOWN[!(rownames(DOWN) %in% both.feat), ]
        } else {
            both.feat.mx <- matrix(0, nrow = 1, ncol = ncol(UP))
        }
    } else {
        both.feat <- NA
        both.feat.mx <- NA
    }
    
    # Vector containing direction of differential event if 'binary'
    UpDw <- c(rep("UP", length(rownames(UP)[rowSums(UP[, seq_len(n1)]) == 
        0])), rep("DOWN", length(rownames(UP)[rowSums(UP[, seq_len(n1)]) > 
        0])), rep("MIXED", length(both.feat)))
    names(UpDw) <- c(rownames(UP)[rowSums(UP[, seq_len(n1)]) == 0], rownames(UP)[rowSums(UP[, 
        seq_len(n1)]) > 0], both.feat)
    rownames(UP) <- paste(rownames(UP), sep = "deco", "UP")
    rownames(MULTI) <- paste(rownames(MULTI), sep = "deco", "UP")
    rownames(DOWN) <- paste(rownames(DOWN), sep = "deco", "DOWN")
    
    return(list(top_eje = top_eje, UP = UP, DOWN = DOWN, MULTI = MULTI, UpDw = UpDw, 
        both.feat = both.feat, both.feat.mx = both.feat.mx))
}


################################# Function for filtering features by Repeats

.repThr <- function(sub, rep.thr, samp.perc) {
    g.names <- vapply(rownames(sub$incidenceMatrix), function(x) unlist(strsplit(x, 
        split = "deco", fixed = TRUE))[1], FUN.VALUE = character(1))
    
    if (all(is.na(sub$classes)) || length(levels(sub$classes)) > 2) {
        f <- apply(sub$incidenceMatrix, 1, function(x) length(which(x >= rep.thr)))
        names(f) <- g.names[names(g.names) %in% names(f)]
    } else {
        f <- vapply(unique(g.names), function(x) sum(apply(sub$incidenceMatrix[grepl(rownames(sub$incidenceMatrix), 
            pattern = x, fixed = TRUE), ], 1, function(x) length(which(x >= 
            rep.thr)))), numeric(1))
    }
    
    # 'Repeats' threshold.  All features under those thresholds will be
    # removed.
    if (length(which(f > samp.perc * dim(sub$incidenceMatrix)[2])) > 0) {
        message(paste(" NOTE: Repeats index threshold have been applied:\n", 
            length(which(f <= samp.perc * dim(sub$incidenceMatrix)[2])), "features removed from", 
            dim(sub$subStatFeature)[1], "total."))
    }
    sub$subStatFeature <- sub$subStatFeature[names(f[which(f > samp.perc * 
        dim(sub$incidenceMatrix)[2])]), ]
    sub$subStatFeature <- cbind(sub$subStatFeature, Repeats.index = f[names(f) %in% 
        rownames(sub$subStatFeature)]/dim(sub$incidenceMatrix)[2] * 100)
    sub$subStatFeature <- sub$subStatFeature[order(rownames(sub$subStatFeature), 
        decreasing = TRUE), ]
    
    # Removing features from incidenceMatrix with lower 'Repeats' than
    # threshold.
    sub$incidenceMatrix <- sub$incidenceMatrix[rownames(sub$incidenceMatrix) %in% 
        names(g.names[g.names %in% as.character(sub$subStatFeature$ID)]), 
        ]
    if (length(which(f > samp.perc * dim(sub$incidenceMatrix)[2])) < 10) {
        stop("After applying 'Repeats' filter, there are not enough features
         (10 features minimum) to input NSCA.")
    }
    
    return(list(sub = sub, g.names = g.names))
}


################################# Function to call overlapFeature

overlapC <- function(sub, cl1, bpparam) {
    message(.timestamp(), " -- Calculating overlapping signal per feature...")
    
    ## Calculating overlap...
    suppressWarnings(overlap <- bplapply(X = rownames(sub$subStatFeature), 
        FUN = overlapFeature, BPPARAM = bpparam, data = sub$data, classes = sub$classes, 
        control = cl1, analysis = "Binary"))
    overlap <- unlist(overlap)
    names(overlap) <- rownames(sub$subStatFeature)
    
    ## Type of profile...
    prof <- vapply(overlap, function(x) max(which(c(0, 0.2, 0.4, 0.75) <= 
        x)), FUN.VALUE = numeric(1))
    
    profile <- prof
    profile[sub$subStatFeature[names(profile), c("UpDw")] == "MIXED" | prof == 4] <- "Mixed"
    profile[prof == 3] <- "Minority"
    profile[prof == 2] <- "Majority"
    profile[prof == 1] <- "Complete"
    names(profile) <- names(overlap)
    profile <- profile[order(names(profile))]
    
    return(list(overlap = overlap, profile = profile))
}


################################# Intern R function of decoReport

.formattingObj <- function(deco, deco0, analysis, sub, info.size) {
    ## Formatting R objects to print.
    if (analysis == "Binary") {
        # p.value from NSCA analysis.
        p.val <- c(deco@NSCAcluster$Control$NSCA$P.Value, deco@NSCAcluster$Case$NSCA$P.Value)
        
        # General information about subclasses found.
        infoSubclass <- rbind(deco@NSCAcluster$Control$infoSubclass, deco@NSCAcluster$Case$infoSubclass)
        rel <- c(rep(p.val[1] <= 0.05, dim(deco@NSCAcluster$Control$infoSubclass)[1]), 
            rep(p.val[2] <= 0.05, dim(deco@NSCAcluster$Case$infoSubclass)[1]))
        infoSubclass <- data.frame(infoSubclass, Binary = rep(0, dim(infoSubclass)[1]), 
            isRelevant = as.character(rel))
        infoSubclass[vapply(rownames(infoSubclass), function(x) unlist(strsplit(x, 
            split = " Subclass"))[1], character(1)) != deco@control, "Binary"] <- 1
        
        # Sample membership to subclasses.
        samplesSubclass <- rbind(cbind(deco@NSCAcluster$Control$samplesSubclass[order(deco@NSCAcluster$Control$samplesSubclass[, 
            1]), ]), cbind(deco@NSCAcluster$Case$samplesSubclass[order(deco@NSCAcluster$Case$samplesSubclass[, 
            1]), ]))
        
        samplesSubclass <- cbind(Samples = rownames(samplesSubclass), Subclass = samplesSubclass[, 
            1])
        rownames(samplesSubclass) <- seq_len(length(rownames(samplesSubclass)))
        
        # NSCA and hierarchical clustering information.
        nsc <- matrix(round(c(deco@NSCAcluster$Control$var, deco@NSCAcluster$Case$var, 
            p.val, deco@NSCAcluster$Control$hclustSamp$huber, deco@NSCAcluster$Case$hclustSamp$huber), 
            digits = 3), nrow = 3, byrow = TRUE)
        colnames(nsc) <- c("Control samples", "Case samples")
        rownames(nsc) <- c("Variability explained by NSCA", "NSCA C-statistic p.value", 
            "Huber's gamma")
        
        # Assignment of colors to all subclasses. It will be conserved along all
        # the report.
        count <- table(vapply(rownames(infoSubclass), function(x) unlist(strsplit(x, 
            split = " Subclass"))[1], character(1)) != deco@control)
        color.cluster <- c(colorRampPalette(c("navyblue", "lightblue"))(count[1]), 
            colorRampPalette(c("orange", "darkred"))(count[2]))
        names(color.cluster) <- rownames(infoSubclass)
        
        # Columns of 'featureTable' to be printed.
        names.col <- c("ID", "SYMBOL", "UpDw", "Profile", "overlap.Ctrl.Case", 
            "Standard.Chi.Square", "Repeats", "Repeats.index", "delta.signal", 
            "sd.Ctrl", "Dendrogram.group.Ctrl", "h.Range.Ctrl", "sd.Case", 
            "Dendrogram.group.Case", "h.Range.Case")
        
        deco@featureTable[, names.col[!names.col %in% c("ID", "SYMBOL", "UpDw", 
            "Profile")]] <- apply(deco@featureTable[, names.col[!names.col %in% 
            c("ID", "SYMBOL", "UpDw", "Profile")]], 2, as.numeric)
        
        textF <- deco@featureTable[, colnames(deco@featureTable) %in% names.col]
        deco0@featureTable <- deco@featureTable
        textF <- textF[, na.omit(match(names.col, colnames(textF)))]
        
        # Chi, Delta , Repeats & SD(inverse)
        ordG <- order(rowMedians(apply(cbind(textF$Standard.Chi.Square, -textF$overlap.Ctrl.Case, 
            -textF$overlap.Ctrl.Case, textF$Repeats, abs(textF$delta.signal), 
            abs(textF$delta.signal), -textF$sd.Ctrl, -textF$sd.Case), 2, function(x) rank(-x, 
            ties.method = "max"))))
        # Chi, Delta & SD
        ordS <- rank(-rowMedians(apply(cbind(textF$Standard.Chi.Square, textF$Standard.Chi.Square, 
            abs(textF$delta.signal), textF$Repeats, abs(textF$delta.signal), 
            textF$h.Range.Ctrl, textF$h.Range.Case), 2, function(x) rank(-x, 
            ties.method = "max"))))
        
        # Saving initial modified 'featureTable' as R data.frame called 'textF0'.
        deco@featureTable <- deco@featureTable[ordG, ]
        textF0 <- textF
        textF <- textF[ordG, ]
        
        # Object defining samples membership to classes previously compared.
        classes <- unlist(lapply(deco@NSCAcluster, function(x) unlist(strsplit(x$samplesSubclass[1], 
            split = " Subclass"))[1]))
    } else {
        # p.value from NSCA analysis.
        p.val <- deco@NSCAcluster$All$NSCA$P.Value
        
        # General information about subclasses found.
        infoSubclass <- deco@NSCAcluster$All$infoSubclass
        rel <- rep(p.val[1] <= 0.05, dim(deco@NSCAcluster$All$infoSubclass)[1])
        infoSubclass <- data.frame(infoSubclass, isRelevant = as.character(rel))
        
        # Sample membership to subclasses.
        samplesSubclass <- cbind(deco@NSCAcluster$All$samplesSubclass[order(deco@NSCAcluster$All$samplesSubclass[, 
            1]), ])
        
        samplesSubclass <- cbind(Samples = rownames(samplesSubclass), Subclass = samplesSubclass[, 
            1])
        rownames(samplesSubclass) <- seq_len(length(rownames(samplesSubclass)))
        
        # NSCA and hierarchical clustering information.
        nsc <- round(rbind(deco@NSCAcluster$All$var, p.val, deco@NSCAcluster$All$hclustSamp$huber), 
            3)
        colnames(nsc) <- c("All samples")
        rownames(nsc) <- c("Variability explained by NSCA", "p.value", "Huber's gamma")
        
        # Assignment of colors to all subclasses. It will be conserved along all
        # the report.
        color.cluster <- colorRampPalette(c("greenyellow", "lightblue", "darkgreen", 
            "darkred"))(dim(infoSubclass)[1])
        names(color.cluster) <- rownames(infoSubclass)
        
        # Columns of 'featureTable' to be printed.
        names.col <- c("ID", "SYMBOL", "Standard.Chi.Square", "Repeats", "Repeats.index", 
            "Avrg.logFC", "Dendrogram.group", "h", "sd", "h.Range")
        
        
        ind <- colnames(deco@featureTable) %in% names.col[!names.col %in% 
            c("ID", "SYMBOL")]
        deco@featureTable[, ind] <- apply(deco@featureTable[, ind], 2, as.numeric)
        
        textF <- deco@featureTable[, colnames(deco@featureTable) %in% names.col]
        textF <- textF[, na.omit(match(names.col, colnames(textF)))]
        
        ordG <- order(rowMedians(apply(cbind(textF$Standard.Chi.Square, textF$Standard.Chi.Square, 
            textF$Repeats, textF$Repeats, textF$h.Range), 2, function(x) rank(-x, 
            ties.method = "max"))))
        ord <- ordS <- ordG
        
        # No sense to make two different ranking for 'Unsupervised' analysis.
        deco@featureTable <- deco@featureTable[ord, ]
        textF0 <- textF
        textF <- textF[ord, ][seq_len(info.size), ]
        classes <- sub$classes
    }
    return(list(deco = deco, p.val = p.val, color.cluster = color.cluster, 
        infoSubclass = infoSubclass, ordG = ordG, ordS = ordS, rel = rel, 
        classes = classes, nsc = nsc, textF = textF, textF0 = textF0, names.col = names.col, 
        samplesSubclass = samplesSubclass))
}


################################# 

NSCACluster <- function(mx, data = NULL, id.names = NULL, k = NULL, label = NA, 
    v = 80, method.dend = NULL, raw = NULL, UpDw = NULL, dir = NA) {
    if (is.null(id.names)) 
        id.names <- rownames(mx)
    
    ## Considering only UP for "mixed" profiles
    if(all(!is.null(UpDw))) {
      
      mixed <- names(which(table(unname(vapply(rownames(mx), function(x) 
        unlist(strsplit(x, split = "deco"))[1], "character"))) > 1))
      
      if(length(mixed) > 0)
        mx <- mx[!rownames(mx) %in% paste(mixed, "decoDOWN", sep = ""),]
    }
    
    ## Calculating NSCA...
    ca_res <- NSCA(as.matrix(mx[rowSums(mx) > 0, colSums(mx) > 0]), v = v)
    nd <- min(which(ca_res$Inertia[, 3] >= v))
    if (nd == 1) {
        nd <- 2
        message(.timestamp(), "-- 1D is enough to reach explained variability from input.
            2D will be considered")
    }
    ca_ev <- rbind(ca_res$fbip[, seq_len(nd)], ca_res$g[, seq_len(nd)])
    
    # Renaming feature IDs
    if (all(!is.null(id.names))) {
        rownames(ca_ev)[rownames(ca_ev) %in% names(id.names)] <- as.character(id.names[rownames(ca_ev)[rownames(ca_ev) %in% 
            names(id.names)]])
    }
    
    # Calculating h-statistic
    if (all(!is.null(raw)) & all(!is.null(data))) {
        dispersion <- data[id.names[rownames(ca_res$inner.prod)], colnames(ca_res$inner.prod)] - 
            raw[id.names[rownames(ca_res$inner.prod)]]
        
        # Dispersion inversion for DOWN regulated within a category of samples
        if (all(!is.null(UpDw))) {
            dispersion[rownames(dispersion) %in% id.names[id.names %in% names(UpDw[UpDw == 
                dir])], ] <- -dispersion[rownames(dispersion) %in% id.names[id.names %in% 
                names(UpDw[UpDw == dir])], ]
        }
        
        inner <- as.matrix(ca_res$inner.prod)
        inner[] <- scale(as.vector(inner))
        dispersion[] <- scale(as.vector(dispersion))
        
        # Make positive ranges
        inner <- inner + abs(min(inner)) + 1
        rownames(dispersion) <- rownames(inner)
        ca_res$inner.prod <- as.matrix(inner * dispersion - mean(as.matrix(inner * 
            dispersion)))
        
        # 'h' inversion for DOWN regulated within a category of samples
        if (all(!is.null(UpDw))) {
            ca_res$inner.prod[rownames(ca_res$inner.prod) %in% names(id.names)[id.names %in% 
                names(UpDw[UpDw == dir])], ] <- -ca_res$inner.prod[rownames(ca_res$inner.prod) %in% 
                names(id.names)[id.names %in% names(UpDw[UpDw == dir])], ]
        }
    } else if (all(!is.null(data))) {
        inner <- as.matrix(ca_res$inner.prod)
        inner[] <- scale(as.vector(inner))
        dispersion <- data[id.names[rownames(ca_res$inner.prod)], colnames(ca_res$inner.prod)] - 
            rowMeans(data[id.names[rownames(ca_res$inner.prod)], colnames(ca_res$inner.prod)])
        dispersion[] <- scale(as.vector(dispersion))
        
        # Make positive ranges
        inner <- inner + abs(min(inner)) + 1
        
        # dispersion <- dispersion + abs(min(dispersion)) + 1
        ca_res$inner.prod <- as.matrix(inner * dispersion - mean(as.matrix(inner * 
            dispersion)))
    } else {
        message("Data has not been provided, then 'h statistic' will be not computed.
        Inner product from NSCA\n
        would be used in biclustering of features and samples.")
    }
    # Make sure assignment
    rownames(ca_res$inner.prod) <- rownames(inner)
    
    # Biclustering
    info.dend.samp <- cophDECO(data = as.matrix(ca_res$inner.prod), method.heatmap = method.dend, 
        k = k, scale = FALSE, coph = TRUE)
    info.dend.feat <- cophDECO(data = as.matrix(t(ca_res$inner.prod)), method.heatmap = "ward.D", 
        k = 10, scale = FALSE, verbose = FALSE, coph = FALSE)
    k <- max(info.dend.samp$cluster)
    
    # Calculating some statistics...
    kk <- gg1 <- gg2 <- ss <- vector(length = k)
    message(.timestamp(), "-- Optimized for ", k, " subclasses.")
    
    info <- vapply(seq_len(k), function(y) rowMeans(cbind(as.matrix(ca_res$inner.prod)[, 
        info.dend.samp$cluster == y])), FUN.VALUE = numeric(dim(ca_res$inner.prod)[1]))
    info <- cbind(info, ca_res$di[rownames(info)])
    
    if (k > 1) 
        info <- as.data.frame(cbind(info, matrix(nrow = dim(info)[1], ncol = 3))) 
    else 
      info <- as.data.frame(t(rbind(info, matrix(nrow = dim(info)[1], ncol = 3))))
    
    colnames(info) <- c(paste("Scl", seq_len(k), sep = ""), "Tau.feature", 
        "Closer.subclass", "h.Best", "ID")
    info <- info[order(rownames(info), decreasing = TRUE), ]
    
    if (k > 1) {
        info[, c("Closer.subclass")] <- apply(info[, seq_len(k)], 1, function(x) which(abs(x) == 
            max(abs(x)))[1])
    } else {
        info[, c("Closer.subclass")] <- rep(1, dim(info)[1])
    }
    
    for (i in seq_len(k)) {
        kk[i] <- length(which(colnames(mx) %in% names(info.dend.samp$cluster[info.dend.samp$cluster == 
            i])))
        gg1[i] <- length(which(info[which(vapply(rownames(info), function(x) unlist(strsplit(x, 
            split = "deco", fixed = TRUE))[2], character(1)) == "UP"), "Closer.subclass"] == 
            i))
        gg2[i] <- length(which(info[which(vapply(rownames(info), function(x) unlist(strsplit(x, 
            split = "deco", fixed = TRUE))[2], character(1)) == "DOWN"), "Closer.subclass"] == 
            i))
        p <- abs(info[info[, "Closer.subclass"] == i, i])
        ss[i] <- mean(p[order(p, decreasing = TRUE)][seq_len((length(p) * 
            0.05))])
    }
    if (all(!is.na(label))) {
        infoSubclass <- data.frame(Samples = kk, FeaturesUP = gg1, FeaturesDOWN = gg2, 
            average.hStat.perc95 = ss, row.names = paste(label, "Subclass", seq(from = 1, 
                to = k), sep = " "))
    } else {
        infoSubclass <- data.frame(Samples = kk, FeaturesUP = gg1, FeaturesDOWN = gg2, 
            average.hStat.perc95 = ss, row.names = paste("Subclass", seq(from = 1, to = k), 
                sep = " "))
    }
    if (k > 1) {
        info[, "h.Best"] <- apply(info[, c(paste("Scl", seq_len(k), sep = ""), 
            "Closer.subclass")], 1, function(x) x[x[k + 1]])
    } else {
        info[, "h.Best"] <- info[, 1]
    }
    
    # Renaming some feature IDs and removing duplicated features.
    info[, c("ID")] <- as.character(id.names[rownames(info)])
    rownames(ca_ev)[rownames(ca_ev) %in% rownames(mx)][!(duplicated(id.names[rownames(ca_ev[rownames(ca_ev) %in% 
        rownames(mx), ])]) | duplicated(id.names[rownames(ca_ev[rownames(ca_ev) %in% 
        rownames(mx), ])], fromLast = TRUE))] <- id.names[rownames(ca_ev[rownames(ca_ev) %in% 
        rownames(mx), ])][!(duplicated(id.names[rownames(ca_ev[rownames(ca_ev) %in% 
        rownames(mx), ])]) | duplicated(id.names[rownames(ca_ev[rownames(ca_ev) %in% 
        rownames(mx), ])], fromLast = TRUE))]
    info <- info[!rownames(info) %in% rownames(info[info[, c("ID")] %in% info[duplicated(info[, 
        c("ID")]), c("ID")], ])[which(unlist(strsplit(rownames(info[info[, 
        c("ID")] %in% info[duplicated(info[, c("ID")]), c("ID")], ]), split = "deco", 
        fixed = TRUE)) == "DOWN")/2], ]
    rownames(ca_res$inner.prod)[!(duplicated(id.names[rownames(ca_res$inner.prod)]) | 
        duplicated(id.names[rownames(ca_res$inner.prod)], fromLast = TRUE))] <- id.names[rownames(ca_res$inner.prod)][!(duplicated(id.names[rownames(ca_res$inner.prod)]) | 
        duplicated(id.names[rownames(ca_res$inner.prod)], fromLast = TRUE))]

    # Calculating h statistic per feature per subclass of samples.
    ord <- seq_len(length(info.dend.feat$cluster))
    names(ord) <- rownames(ca_res$inner.prod)[rev(info.dend.feat$dend$order)]
    patt <- info.dend.feat$cluster
    for (i in seq_len(max(info.dend.feat$cluster))) patt[info.dend.feat$cluster == 
        i] <- which(order(vapply(seq_len(max(info.dend.feat$cluster)), function(x) mean(which(info.dend.feat$cluster[rev(info.dend.feat$dend$order)] == 
        x)), numeric(1))) == i)
    info.dend.feat$cluster <- patt
    info <- data.frame(info, h.Range = apply(info[, seq_len(k)], 1, function(x) diff(range(x))), 
        Dendrogram.group = info.dend.feat$cluster[rownames(info)], Dendrogram.order = ord[rownames(info)])
    rownames(info) <- as.character(info[, c("ID")])
    rankingH <- cbind(t(gdata::interleave(t(apply(info[, seq_len(k)], 2, function(x) rank(-abs(x), 
        ties.method = "max"))), t(info[, seq_len(k)]))), info[, "h.Range"], 
        info[, "Dendrogram.group"], ord[rownames(info)])
    colnames(rankingH) <- c(paste(rep(c("Ranking", "h"), k), rep(paste("Scl", 
        seq_len(k), sep = ""), each = 2), sep = "."), "h.Range", "Dendrogram.group", 
        "Dendrogram.order")
    
    # Find out sample membership to any subclass.
    samplesSubclass <- cbind(info.dend.samp$cluster)
    colnames(samplesSubclass) <- "Subclass"
    for (i in seq_len(dim(samplesSubclass)[1])) samplesSubclass[i, 1] <- rownames(infoSubclass)[as.numeric(samplesSubclass[i, 
        1])]
    
    # Returning results.
    if (all(!is.null(data))) {
        names(ca_res)[names(ca_res) == "inner.prod"] <- "h"
        results <- list(ca_res, info, rankingH, infoSubclass, mx, ca_ev, samplesSubclass, 
            ca_res$Inertia[nd, 3], method.dend, info.dend.samp, info.dend.feat, 
            inner, dispersion)
        names(results) <- c("NSCA", "infoFeature", "rankingFeature.h", "infoSubclass", 
            "incidenceMatrix", "Biplot.coordinates", "samplesSubclass", "var", 
            "clus.method", "hclustSamp", "hclustFeat", "inner", "dispersion")
    } else {
        results <- list(ca_res, info, rankingH, infoSubclass, mx, ca_ev, samplesSubclass, 
            ca_res$Inertia[nd, 3], method.dend, info.dend.samp, info.dend.feat)
        names(results) <- c("NSCA", "infoFeature", "rankingFeature.h", "infoSubclass", 
            "incidenceMatrix", "Biplot.coordinates", "samplesSubclass", "var", 
            "clus.method", "hclustSamp", "hclustFeat")
    }
    
    names(results$var) <- "Variability explained by NSCA"
    message(.timestamp(), "-- Summary of clustering analysis:")
    
    print(infoSubclass)
    print(results$var)
    
    return(results)
}


############################## 

.cluster.stat <- function(d = NULL, clustering, alt.clustering = NULL, noisecluster = FALSE, 
    silhouette = TRUE, G2 = FALSE, G3 = FALSE, wgap = TRUE, sepindex = TRUE, 
    sepprob = 0.1, sepwithnoise = TRUE, compareonly = FALSE, aggregateonly = FALSE) {
    if (!is.null(d)) {
        d <- as.dist(d)
    }
    cn <- max(clustering)
    clusteringf <- as.factor(clustering)
    clusteringl <- levels(clusteringf)
    cnn <- length(clusteringl)
    if (cn != cnn) {
        warning("clustering renumbered because maximum != number of clusters")
        for (i in seq_len(cnn)) clustering[clusteringf == clusteringl[i]] <- i
        cn <- cnn
    }
    n <- length(clustering)
    noisen <- 0
    cwn <- cn
    if (noisecluster) {
        noisen <- sum(clustering == cn)
        cwn <- cn - 1
    }
    diameter <- average.distance <- median.distance <- separation <- average.toother <- cluster.size <- within.dist <- between.dist <- numeric(0)
    for (i in seq_len(cn)) cluster.size[i] <- sum(clustering == i)
    pk1 <- cluster.size/n
    pk10 <- pk1[pk1 > 0]
    h1 <- -sum(pk10 * log(pk10))
    corrected.rand <- vi <- NULL
    if (!is.null(alt.clustering)) {
        choose2 <- function(v) {
            out <- numeric(0)
            for (i in seq_len(length(v))) out[i] <- ifelse(v[i] >= 2, choose(v[i], 
                2), 0)
            out
        }
        cn2 <- max(alt.clustering)
        clusteringf <- as.factor(alt.clustering)
        clusteringl <- levels(clusteringf)
        cnn2 <- length(clusteringl)
        if (cn2 != cnn2) {
            warning("alt.clustering renumbered because maximum != number of clusters")
            for (i in seq_len(cnn2)) alt.clustering[clusteringf == clusteringl[i]] <- i
            cn2 <- cnn2
        }
        nij <- table(clustering, alt.clustering)
        dsum <- sum(choose2(nij))
        cs2 <- numeric(0)
        for (i in seq_len(cn2)) cs2[i] <- sum(alt.clustering == i)
        sum1 <- sum(choose2(cluster.size))
        sum2 <- sum(choose2(cs2))
        pk2 <- cs2/n
        pk12 <- nij/n
        corrected.rand <- (dsum - sum1 * sum2/choose2(n))/((sum1 + sum2)/2 - 
            sum1 * sum2/choose2(n))
        pk20 <- pk2[pk2 > 0]
        h2 <- -sum(pk20 * log(pk20))
        icc <- 0
        for (i in seq_len(cn)) for (j in seq_len(cn2)) if (pk12[i, j] > 0) {
            icc <- icc + pk12[i, j] * log(pk12[i, j]/(pk1[i] * pk2[j]))
        }
        vi <- h1 + h2 - 2 * icc
    }
    if (compareonly) {
        out <- list(corrected.rand = corrected.rand, vi = vi)
    } else {
        dmat <- as.matrix(d)
        within.cluster.ss <- 0
        overall.ss <- nonnoise.ss <- sum(d^2)/n
        if (noisecluster) {
            nonnoise.ss <- sum(as.dist(dmat[clustering <= cwn, clustering <= 
                cwn])^2)/sum(clustering <= cwn)
        }
        ave.between.matrix <- separation.matrix <- matrix(0, ncol = cn, nrow = cn)
        di <- list()
        for (i in seq_len(cn)) {
            cluster.size[i] <- sum(clustering == i)
            di <- as.dist(dmat[clustering == i, clustering == i])
            if (i <= cwn) {
                within.cluster.ss <- within.cluster.ss + sum(di^2)/cluster.size[i]
                within.dist <- c(within.dist, di)
            }
            if (length(di) > 0) {
                diameter[i] <- max(di)
            } else {
                diameter[i] <- NA
            }
            average.distance[i] <- mean(di)
            median.distance[i] <- median(di)
            bv <- numeric(0)
            for (j in seq_len(cn)) {
                if (j != i) {
                  sij <- dmat[clustering == i, clustering == j]
                  bv <- c(bv, sij)
                  if (i < j) {
                    separation.matrix[i, j] <- separation.matrix[j, i] <- min(sij)
                    ave.between.matrix[i, j] <- ave.between.matrix[j, i] <- mean(sij)
                    if (i <= cwn & j <= cwn) {
                      between.dist <- c(between.dist, sij)
                    }
                  }
                }
            }
            separation[i] <- min(bv)
            average.toother[i] <- mean(bv)
        }
        average.between <- mean(between.dist)
        average.within <- mean(within.dist)
        nwithin <- length(within.dist)
        nbetween <- length(between.dist)
        between.cluster.ss <- nonnoise.ss - within.cluster.ss
        ch <- between.cluster.ss * (n - noisen - cwn)/(within.cluster.ss * 
            (cwn - 1))
        clus.avg.widths <- avg.width <- NULL
        if (silhouette) {
            sii <- cluster::silhouette(clustering, dmatrix = dmat)
            sc <- summary(sii)
            clus.avg.widths <- sc$clus.avg.widths
            if (noisecluster) {
                avg.width <- mean(sii[clustering <= cwn, 3])
            } else {
                avg.width <- sc$avg.width
            }
        }
        g2 <- g3 <- cn2 <- cwidegap <- widestgap <- sindex <- NULL
        if (G2) {
            splus <- sminus <- 0
            for (i in seq_len(nwithin)) {
                splus <- splus + sum(within.dist[i] < between.dist)
                sminus <- sminus + sum(within.dist[i] > between.dist)
            }
            g2 <- (splus - sminus)/(splus + sminus)
        }
        if (G3) {
            sdist <- sort(c(within.dist, between.dist))
            sr <- nwithin + nbetween
            dmin <- sum(sdist[seq_len(nwithin)])
            dmax <- sum(sdist[(sr - nwithin + 1):sr])
            g3 <- (sum(within.dist) - dmin)/(dmax - dmin)
        }
        pearsongamma <- cor(c(within.dist, between.dist), c(rep(0, nwithin), 
            rep(1, nbetween)))
        dunn <- min(separation[seq_len(cwn)])/max(diameter[seq_len(cwn)], 
            na.rm = TRUE)
        acwn <- ave.between.matrix[seq_len(cwn), seq_len(cwn)]
        dunn2 <- min(acwn[upper.tri(acwn)])/max(average.distance[seq_len(cwn)], 
            na.rm = TRUE)
        if (wgap) {
            cwidegap <- rep(0, cwn)
            for (i in seq_len(cwn)) if (sum(clustering == i) > 1) {
                cwidegap[i] <- max(hclust(as.dist(dmat[clustering == i, clustering == 
                  i]), method = "single")$height)
            }
            widestgap <- max(cwidegap)
        }
        if (sepindex) {
            psep <- rep(NA, n)
            if (sepwithnoise | !noisecluster) {
                for (i in seq_len(n)) psep[i] <- min(dmat[i, clustering != 
                  clustering[i]])
                minsep <- floor(n * sepprob)
            } else {
                dmatnn <- dmat[clustering <= cwn, clustering <= cwn]
                clusteringnn <- clustering[clustering <= cwn]
                for (i in seq_len((n - noisen))) psep[i] <- min(dmatnn[i, 
                  clusteringnn != clusteringnn[i]])
                minsep <- floor((n - noisen) * sepprob)
            }
            sindex <- mean(sort(psep)[seq_len(minsep)])
        }
        if (!aggregateonly) {
            out <- list(n = n, cluster.number = cn, cluster.size = cluster.size, 
                min.cluster.size = min(cluster.size[seq_len(cwn)]), noisen = noisen, 
                diameter = diameter, average.distance = average.distance, 
                median.distance = median.distance, separation = separation, 
                average.toother = average.toother, separation.matrix = separation.matrix, 
                ave.between.matrix = ave.between.matrix, average.between = average.between, 
                average.within = average.within, n.between = nbetween, n.within = nwithin, 
                max.diameter = max(diameter[seq_len(cwn)], na.rm = TRUE), 
                min.separation = sepwithnoise * min(separation) + (!sepwithnoise) * 
                  min(separation[seq_len(cwn)]), within.cluster.ss = within.cluster.ss, 
                clus.avg.silwidths = clus.avg.widths, avg.silwidth = avg.width, 
                g2 = g2, g3 = g3, pearsongamma = pearsongamma, dunn = dunn, 
                dunn2 = dunn2, entropy = h1, wb.ratio = average.within/average.between, 
                ch = ch, cwidegap = cwidegap, widestgap = widestgap, sindex = sindex, 
                corrected.rand = corrected.rand, vi = vi)
        } else {
            out <- list(n = n, cluster.number = cn, min.cluster.size = min(cluster.size[seq_len(cwn)]), 
                noisen = noisen, average.between = average.between, average.within = average.within, 
                max.diameter = max(diameter[seq_len(cwn)], na.rm = TRUE), 
                min.separation = sepwithnoise * min(separation) + (!sepwithnoise) * 
                  min(separation[seq_len(cwn)]), ave.within.cluster.ss = within.cluster.ss/(n - 
                  noisen), avg.silwidth = avg.width, g2 = g2, g3 = g3, pearsongamma = pearsongamma, 
                dunn = dunn, dunn2 = dunn2, entropy = h1, wb.ratio = average.within/average.between, 
                ch = ch, widestgap = widestgap, sindex = sindex, corrected.rand = corrected.rand, 
                vi = vi)
        }
    }
    out
}

############################## 

NSCA <- function(N, v = 80) {
    I <- nrow(N)  # Number of rows of table
    J <- ncol(N)  # Number of columns of table
    Inames <- dimnames(N)[1]  # Row category names
    Jnames <- dimnames(N)[2]  # Column category names
    n <- sum(N)  # Total number of classifications in the table
    p <- N * (1/n)  # Matrix of joint relative proportions
    Imass <- as.matrix(rowSums(p))
    Jmass <- as.matrix(colSums(p))
    ItJ <- Imass %*% t(Jmass)
    y <- p - ItJ
    dI <- diag(c(Imass), nrow = I, ncol = I)
    dJ <- diag(c(Jmass), nrow = J, ncol = J)
    Ih <- Imass^-0.5
    Jh <- Jmass^-0.5
    dIh <- diag(c(Ih), nrow = I, ncol = I)
    dJh <- diag(c(Jh), nrow = J, ncol = J)
    uni <- rep(1, times = J)  # A unitary vector of length J
    x <- (p %*% solve(dJ) - Imass %*% t(uni)) %*% sqrt(dJ)
    # Column Weighted Matrix of Pi
    sva <- svd(x)  # SVD of Pi
    dmu <- diag(sva$d)
    
    fbip <- sva$u
    dimnames(fbip) <- list(paste(Inames[[1]]), paste(seq_len(min(I, J))))
    
    
    f <- sva$u %*% dmu  # Row Principal Coordinates
    g <- dJh %*% sva$v %*% dmu  # Column Principal Coordinates
    dimnames(f) <- list(paste(Inames[[1]]), paste(seq_len(min(I, J))))
    dimnames(g) <- list(paste(Jnames[[1]]), paste(seq_len(min(I, J))))
    
    
    Principal.Inertia <- diag(t(f[, seq_len(min(I - 1, J - 1))]) %*% f[, seq_len(min(I - 
        1, J - 1))])
    Total.Inertia <- sum(Principal.Inertia)
    tau.num <- Total.Inertia  # Numerator of Goodman-Kruskal tau
    tau.denom <- 1 - sum(Imass^2)  # Denominator of Goodman-Kruskal tau
    tau <- tau.num/tau.denom  # Goodman-Kruskal tau index
    Ctau <- (n - 1) * (I - 1) * tau  # Light & Margolin's C-statistic
    Percentage.Inertia <- 100 * (Principal.Inertia/tau.num)
    Cumm.Inertia <- cumsum(Percentage.Inertia)
    Inertia <- cbind(Principal.Inertia, Percentage.Inertia, Cumm.Inertia)
    dimnames(Inertia)[1] <- list(paste("Axis", seq_len(min(I - 1, J - 1)), 
        sep = " "))
    q.value <- 1 - pchisq(Ctau, df = (I - 1) * (J - 1))
    inner.prod <- fbip[, seq_len(which(Cumm.Inertia >= v)[1])] %*% t(g[, seq_len(which(Cumm.Inertia >= 
        v)[1])])
    rownames(inner.prod) <- rownames(fbip)
    tau.num.j <- rowSums(apply(g^2, 2, function(x) Jmass * (x)/tau.num))
    names(tau.num.j) <- rownames(Jmass)
    
    list(N = N, f = f, fbip = fbip, g = g, tau = tau, tau.num.j = tau.num.j, 
        di = apply(f, 1, function(x) sum(x^2)), dj = apply(g, 1, function(x) sum(x^2)), 
        Cstat = Ctau, Total.Inertia = Total.Inertia, P.Value = q.value, Inertia = Inertia, 
        inner.prod = inner.prod)
}

###################################################### Short functions

range01 <- function(x) {
    (x - min(x))/(max(x) - min(x))
}

is.even <- function(x) {
    x%%2 == 0
}
fjcamlab/deco documentation built on Aug. 18, 2024, 4:28 a.m.