#' Create enrichment scores heatmaps.
#'
#' This function computes the enrichment scores for the cells using \link[Seurat]{AddModuleScore} and then aggregates the scores by the metadata variables provided by the user and displays it as a heatmap, computed by \link[ComplexHeatmap]{Heatmap}.
#'
#' @inheritParams doc_function
#' @param enforce_symmetry \strong{\code{\link[base]{logical}}} | Whether the geyser and feature plot has a symmetrical color scale.
#' @param ncores \strong{\code{\link[base]{numeric}}} | Number of cores used to run UCell scoring.
#' @param storeRanks \strong{\code{\link[base]{logical}}} | Whether to store the ranks for faster UCell scoring computations. Might require large amounts of RAM.
#' @param scale_scores \strong{\code{\link[base]{logical}}} | Whether to transform the scores to a range of 0-1 for plotting.
#' @param return_object \strong{\code{\link[base]{logical}}} | Return the Seurat object with the enrichment scores stored.
#' @return A ggplot2 object.
#' @export
#'
#' @example /man/examples/examples_do_EnrichmentHeatmap.R
do_EnrichmentHeatmap <- function(sample,
input_gene_list,
features.order = NULL,
groups.order = NULL,
cluster = TRUE,
scale_scores = FALSE,
assay = NULL,
slot = NULL,
reduction = NULL,
group.by = NULL,
verbose = FALSE,
na.value = "grey75",
legend.position = "bottom",
use_viridis = FALSE,
viridis.palette = "G",
viridis.direction = 1,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.length = 20,
legend.width = 1,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
font.size = 14,
font.type = "sans",
axis.text.x.angle = 45,
enforce_symmetry = FALSE,
nbin = 24,
ctrl = 100,
flavor = "Seurat",
legend.title = NULL,
ncores = 1,
storeRanks = TRUE,
min.cutoff = NA,
max.cutoff = NA,
pt.size = 1,
plot_cell_borders = TRUE,
border.size = 2,
return_object = FALSE,
number.breaks = 5,
sequential.palette = "YlGnBu",
diverging.palette = "RdBu",
diverging.direction = -1,
sequential.direction = 1,
flip = FALSE,
grid.color = "white",
border.color = "black",
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_EnrichmentHeatmap")
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
# Check logical parameters.
logical_list <- list("use_viridis" = use_viridis,
"enforce_symmetry" = enforce_symmetry,
"plot_cell_borders" = plot_cell_borders,
"flip" = flip,
"cluster" = cluster,
"scale_scores" = scale_scores)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("viridis.direction" = viridis.direction,
"nbin" = nbin,
"ctrl" = ctrl,
"ncores" = ncores,
"pt.size" = pt.size,
"border.size" = border.size,
"font.size" = font.size,
"legend.width" = legend.width,
"legend.length" = legend.length,
"legend.framewidth" = legend.framewidth,
"legend.tickwidth" = legend.tickwidth,
"viridis.direction" = viridis.direction,
"axis.text.x.angle" = axis.text.x.angle,
"min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff,
"number.breaks" = number.breaks,
"sequential.direction" = sequential.direction,
"diverging.direction" = diverging.direction)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("input_gene_list" = input_gene_list,
"legend.title" = legend.title,
"legend.position" = legend.position,
"legend.framecolor" = legend.framecolor,
"font.type" = font.type,
"group.by" = group.by,
"na.value" = na.value,
"legend.position" = legend.position,
"viridis.palette" = viridis.palette,
"flavor" = flavor,
"sequential.palette" = sequential.palette,
"diverging.palette" = diverging.palette,
"grid.color" = grid.color,
"border.color" = border.color,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
check_colors(na.value, parameter_name = "na.value")
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(grid.color, parameter_name = "grid.color")
check_colors(border.color, parameter_name = "border.color")
check_parameters(parameter = diverging.palette, parameter_name = "diverging.palette")
check_parameters(parameter = sequential.palette, parameter_name = "sequential.palette")
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = legend.type, parameter_name = "legend.type")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = flavor, parameter_name = "flavor")
check_parameters(parameter = number.breaks, parameter_name = "number.breaks")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
check_parameters(diverging.direction, parameter_name = "diverging.direction")
`%>%` <- magrittr::`%>%`
if (isTRUE(enforce_symmetry)){
colors.gradient <- compute_continuous_palette(name = diverging.palette,
use_viridis = FALSE,
direction = diverging.direction,
enforce_symmetry = enforce_symmetry)
} else {
colors.gradient <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette, sequential.palette),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = enforce_symmetry)
}
if (!(is.null(assay)) & flavor == "UCell"){
warning(paste0(add_warning(), crayon_body("When using "),
crayon_key("flavor = UCell"),
crayon_body(" do not use the "),
crayon_key("assay"),
crayon_body(" parameter.\nInstead, make sure that the "),
crayon_key("assay"),
crayon_body(" you want to compute the scores with is set as the "),
crayon_key("default"),
crayon_body(" assay. Setting it to "),
crayon_key("NULL"),
crayon_body(".")), call. = FALSE)
}
if (!(is.null(slot)) & flavor == "Seurat"){
warning(paste0(add_warning(), crayon_body("When using "),
crayon_key("flavor = Seurat"),
crayon_body(" do not use the "),
crayon_key("slot"),
crayon_body(" parameter.\nThis is determiend by default in "),
crayon_key("Seurat"),
crayon_body(". Setting it to "),
crayon_key("NULL"),
crayon_body(".")), call. = FALSE)
}
if (is.null(assay)){assay <- check_and_set_assay(sample)$assay}
if (is.null(slot)){slot <- check_and_set_slot(slot)}
if (is.character(input_gene_list)){
stop(paste0(add_cross(),
crayon_body("You have provided a string of genes to "),
crayon_key("input_gene_list"),
crayon_body(". Please provide a "),
crayon_key("named list"),
crayon_body(" instead.")), call. = FALSE)
}
if (!is.null(features.order)){
assertthat::assert_that(sum(features.order %in% names(input_gene_list)) == length(names(input_gene_list)),
msg = paste0(add_cross(), crayon_body("The names provided to "),
crayon_key("features.order"),
crayon_body(" do not match the names of the gene sets in "),
crayon_key("input_gene_list"),
crayon_body(".")))
}
if (is.null(legend.title)){
if (flavor == "UCell"){
legend.title <- ifelse(isTRUE(scale_scores), "UCell score | Scaled", "UCell score")
} else if (flavor == "Seurat"){
legend.title <- ifelse(isTRUE(scale_scores), "Enrichment | Scaled", "Enrichment")
}
}
input_list <- input_gene_list
assertthat::assert_that(!is.null(names(input_list)),
msg = paste0(add_cross(), crayon_body("Please provide a "),
crayon_key("named list"),
crayon_body(" to "),
crayon_key("input_gene_list"),
crayon_body(".")))
if (length(unlist(stringr::str_match_all(names(input_list), "_"))) > 0){
warning(paste0(add_warning(), crayon_body("Found "),
crayon_key("underscores (_)"),
crayon_body(" in the name of the gene sets provided. Replacing them with "),
crayon_key("dots (.)"),
crayon_body(" to avoid conflicts when generating the Seurat assay.")), call. = FALSE)
names.use <- stringr::str_replace_all(names(input_list), "_", ".")
names(input_list) <- names.use
# nocov start
if (!is.null(features.order)){
features.order <- stringr::str_replace_all(features.order, "_", ".")
}
# nocov end
}
if (length(unlist(stringr::str_match_all(names(input_list), "-"))) > 0){
warning(paste0(add_warning(), crayon_body("Found "),
crayon_key("dashes (-)"),
crayon_body(" in the name of the gene sets provided. Replacing them with "),
crayon_key("dots (.)"),
crayon_body(" to avoid conflicts when generating the Seurat assay.")), call. = FALSE)
names.use <- stringr::str_replace_all(names(input_list), "-", ".")
names(input_list) <- names.use
# nocov start
if (!is.null(features.order)){
features.order <- stringr::str_replace_all(features.order, "-", ".")
}
# nocov end
}
# Compute the enrichment scores.
sample <- compute_enrichment_scores(sample = sample,
input_gene_list = input_list,
verbose = verbose,
nbin = nbin,
ctrl = ctrl,
flavor = flavor,
ncores = ncores,
storeRanks = storeRanks,
# nocov start
assay = if (flavor == "UCell"){NULL} else {assay},
slot = if (flavor == "Seurat"){NULL} else {slot},
norm_data = scale_scores)
# nocov end
out.list <- list()
# Check group.by.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = TRUE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
matrix.list <- list()
names.use <- names(input_list)
for (group in group.by){
suppressMessages({
sample$group.by <- sample@meta.data[, group]
df <- sample@meta.data %>%
dplyr::select(dplyr::all_of(c("group.by", names.use))) %>%
tidyr::pivot_longer(cols = -"group.by",
names_to = "gene_list",
values_to = "enrichment") %>%
dplyr::group_by(.data$group.by, .data$gene_list) %>%
dplyr::summarise(mean = mean(.data$enrichment, na.rm = TRUE))
df.order <- df
})
matrix.list[[group]][["df"]] <- df
matrix.list[[group]][["df.order"]] <- df.order
}
counter <- 0
for (group in group.by){
counter <- counter + 1
df <- matrix.list[[group]][["df"]]
df.order <- matrix.list[[group]][["df.order"]]
# Transform to wide to retrieve the hclust.
df.order <- df.order %>%
tidyr::pivot_wider(id_cols = "group.by",
names_from = 'gene_list',
values_from = 'mean') %>%
tibble::column_to_rownames("group.by") %>%
as.matrix()
df.order[is.na(df.order)] <- 0
if (length(rownames(df.order)) == 1){
row_order <- rownames(df.order)[1]
} else {
if (isTRUE(cluster)){
row_order <- rownames(df.order)[stats::hclust(stats::dist(df.order, method = "euclidean"), method = "ward.D")$order]
} else {
row_order <- rownames(df.order)
}
}
if (counter == 1){
if (length(colnames(df.order)) == 1){
col_order <- colnames(df.order)[1]
} else {
if (isTRUE(cluster)){
col_order <- colnames(df.order)[stats::hclust(stats::dist(t(df.order), method = "euclidean"), method = "ward.D")$order]
} else {
col_order <- colnames(df.order)
}
}
}
if (!is.null(groups.order)){
if (group %in% names(groups.order)){
groups.order.use <- groups.order[[group]]
} else {
groups.order.use <- groups.order
}
} else {
groups.order.use <- row_order
}
data <- df %>%
dplyr::mutate("gene_list" = factor(.data$gene_list, levels = if (is.null(features.order)){rev(col_order)} else {features.order}),
"group.by" = factor(.data$group.by, levels = groups.order.use))
if (!is.na(min.cutoff)){
data <- data %>%
dplyr::mutate("mean" = ifelse(.data$mean < min.cutoff, min.cutoff, .data$mean))
}
if (!is.na(max.cutoff)){
data <- data %>%
dplyr::mutate("mean" = ifelse(.data$mean > max.cutoff, max.cutoff, .data$mean))
}
matrix.list[[group]] <- NULL
matrix.list[[group]][["data"]] <- data
}
# Compute limits.
min.vector <- NULL
max.vector <- NULL
for (group in group.by){
data <- matrix.list[[group]][["data"]]
min.vector <- append(min.vector, min(data$mean, na.rm = TRUE))
max.vector <- append(max.vector, max(data$mean, na.rm = TRUE))
}
# Get the absolute limits of the datasets.
limits <- c(min(min.vector),
max(max.vector))
# Compute overarching scales for all heatmaps.
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = "SCT",
reduction = NULL,
slot = "scale.data",
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = enforce_symmetry,
from_data = TRUE,
limits.use = limits)
# Plot individual heatmaps.
counter <- 0
list.heatmaps <- list()
for (group in group.by){
counter <- counter + 1
data <- matrix.list[[group]][["data"]]
p <- data %>%
# nocov start
ggplot2::ggplot(mapping = ggplot2::aes(x = if(base::isFALSE(flip)){.data$gene_list} else {.data$group.by},
y = if(base::isFALSE(flip)){.data$group.by} else {.data$gene_list},
fill = .data$mean)) +
# nocov end
ggplot2::geom_tile(color = grid.color, linewidth = 0.5) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$group.by))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$gene)))) +
ggplot2::coord_equal() +
ggplot2::scale_fill_gradientn(colors = colors.gradient,
na.value = na.value,
name = legend.title,
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
p <- modify_continuous_legend(p = p,
legend.title = legend.title,
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
# nocov start
# Set axis titles.
if(base::isFALSE(flip)){
if (counter == 1){
if (length(group.by) > 1){
xlab <- NULL
} else {
xlab <- "Gene set"
}
ylab <- group
} else {
if (length(group.by) > 1){
if (counter == length(group.by)){
xlab <- "Gene set"
} else {
xlab <- NULL
}
} else {
xlab <- NULL
}
ylab <- group
}
} else {
if (counter == 1){
ylab <- "Gene set"
xlab <- group
} else {
xlab <- group
ylab <- NULL
}
}
# nocov end
axis.parameters <- handle_axis(flip = flip,
group.by = group.by,
group = group,
counter = counter,
axis.text.x.angle = axis.text.x.angle,
plot.title.face = plot.title.face,
plot.subtitle.face = plot.subtitle.face,
plot.caption.face = plot.caption.face,
axis.title.face = axis.title.face,
axis.text.face = axis.text.face,
legend.title.face = legend.title.face,
legend.text.face = legend.text.face)
# Set theme
p <- p +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = axis.parameters$axis.ticks.x.bottom,
axis.ticks.x.top = axis.parameters$axis.ticks.x.top,
axis.ticks.y.left = axis.parameters$axis.ticks.y.left,
axis.ticks.y.right = axis.parameters$axis.ticks.y.right,
axis.text.y.left = axis.parameters$axis.text.y.left,
axis.text.y.right = axis.parameters$axis.text.y.right,
axis.text.x.top = axis.parameters$axis.text.x.top,
axis.text.x.bottom = axis.parameters$axis.text.x.bottom,
axis.title.x.bottom = axis.parameters$axis.title.x.bottom,
axis.title.x.top = axis.parameters$axis.title.x.top,
axis.title.y.right = axis.parameters$axis.title.y.right,
axis.title.y.left = axis.parameters$axis.title.y.left,
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 0, r = 0, b = 0, l = 0),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
legend.position = legend.position,
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"))
list.heatmaps[[group]] <- p
}
# Plot the combined plot
input <- if(base::isFALSE(flip)){list.heatmaps[rev(group.by)]}else{list.heatmaps[group.by]}
p <- patchwork::wrap_plots(input,
ncol = if (base::isFALSE(flip)){1} else {NULL},
nrow = if(isTRUE(flip)) {1} else {NULL},
guides = "collect")
p <- p +
patchwork::plot_annotation(theme = ggplot2::theme(legend.position = legend.position,
plot.title = ggplot2::element_text(size = font.size,
family = font.type,
color = "black",
face = plot.title.face,
hjust = 0),
plot.subtitle = ggplot2::element_text(size = font.size,
face = plot.subtitle.face,
family = font.type,
color = "black",
hjust = 0),
plot.caption = ggplot2::element_text(size = font.size,
face = plot.caption.face,
family = font.type,
color = "black",
hjust = 1),
plot.caption.position = "plot"))
out.list[["Heatmap"]] <- p
if (isTRUE(return_object)){
# Generate a Seurat assay.
sample[["Enrichment"]] <- sample@meta.data %>%
dplyr::select(dplyr::all_of(names(input_list))) %>%
t() %>%
as.data.frame() %>%
Seurat::CreateAssayObject(.)
sample@meta.data <- sample@meta.data %>%
dplyr::select(-dplyr::all_of(names(input_list)))
sample@assays$Enrichment@key <- "Enrichment_"
Seurat::DefaultAssay(sample) <- "Enrichment"
out.list[["Object"]] <- sample
}
if (base::isFALSE(return_object)){
return_me <- out.list[["Heatmap"]]
} else {
return_me <- out.list
}
return(return_me)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.