#' Compute affinity of gene sets to cell populations using decoupleR.
#'
#' Major contributions to this function:
#' - \href{https://github.com/MarcElosua}{Marc Elosua BayƩs} for the core concept code and idea.
#' - \href{https://github.com/paubadiam}{Pau Badia i Mompel} for the network generation.
#'
#' @inheritParams doc_function
#' @param statistic \strong{\code{\link[base]{character}}} | DecoupleR statistic to use for the analysis.
#' values in the Idents of the Seurat object are reported, assessing how specific a given gene set is for a given cell population compared to other gene sets of equal expression.
#'
#' @return A list containing different plots.
#' @export
#'
#' @example /man/examples/examples_do_ActivityHeatmap.R
do_ActivityHeatmap <- function(sample,
input_gene_list,
subsample = 2500,
group.by = NULL,
assay = NULL,
slot = NULL,
statistic = "ulm",
number.breaks = 5,
use_viridis = FALSE,
viridis.palette = "G",
viridis.direction = -1,
sequential.palette = "YlGnBu",
sequential.direction = 1,
diverging.palette = "RdBu",
diverging.direction = -1,
enforce_symmetry = TRUE,
legend.position = "bottom",
legend.width = 1,
legend.length = 20,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
na.value = "grey75",
font.size = 14,
font.type = "sans",
axis.text.x.angle = 45,
flip = FALSE,
colors.use = NULL,
min.cutoff = NA,
max.cutoff = NA,
verbose = TRUE,
return_object = FALSE,
grid.color = "white",
border.color = "black",
flavor = "Seurat",
nbin = 24,
ctrl = 100,
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests("do_ActivityHeatmap")
check_Seurat(sample)
if (is.null(assay)){assay <- check_and_set_assay(sample)$assay}
if (is.null(slot)){slot <- check_and_set_slot(slot)}
# Check logical parameters.
logical_list <- list("verbose" = verbose,
"flip" = flip,
"enforce_symmetry" = enforce_symmetry,
"use_viridis" = use_viridis)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("font.size" = font.size,
"legend.length" = legend.length,
"legend.width" = legend.width,
"legend.framewidth" = legend.framewidth,
"legend.tickwidth" = legend.tickwidth,
"subsample" = subsample,
"viridis.direction" = viridis.direction,
"axis.text.x.angle" = axis.text.x.angle,
"min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff,
"number.breaks" = number.breaks,
"sequential.direction" = sequential.direction,
"nbin" = nbin,
"ctrl" = ctrl,
"diverging.direction" = diverging.direction)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("group.by" = group.by,
"assay" = assay,
"slot" = slot,
"statistic" = statistic,
"legend.type" = legend.type,
"legend.position" = legend.position,
"legend.framecolor" = legend.framecolor,
"legend.tickcolor" = legend.tickcolor,
"font.type" = font.type,
"viridis.palette" = viridis.palette,
"diverging.palette" = diverging.palette,
"sequential.palette" = sequential.palette,
"grid.color" = grid.color,
"border.color" = border.color,
"flavor" = flavor,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face,
"na.value" = na.value)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
`%>%` <- magrittr::`%>%`
check_colors(grid.color, parameter_name = "grid.color")
check_colors(na.value, parameter_name = "na.value")
check_colors(border.color, parameter_name = "border.color")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
check_parameters(diverging.direction, parameter_name = "diverging.direction")
# Assign a group.by if this is null.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = TRUE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
if (!is.na(subsample)){
sample <- sample[, sample(colnames(sample), subsample)]
}
# Generate the continuous color palette.
if (isTRUE(enforce_symmetry)){
colors.gradient <- compute_continuous_palette(name = diverging.palette,
use_viridis = FALSE,
direction = diverging.direction,
enforce_symmetry = enforce_symmetry)
} else {
colors.gradient <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette, sequential.palette),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = enforce_symmetry)
}
# Generate a network with the names of the list of genes as source and the gene sets as targets with 1 of mode of regulation.
# Step 1: Check for underscores in the names of the gene sets.
if (length(unlist(stringr::str_match_all(names(input_gene_list), "_"))) > 0){
warning(paste0(add_warning(), crayon_body("Found "),
crayon_key("underscores (_)"),
crayon_body(" in the name of the gene sets provided. Replacing them with "),
crayon_key("dots (.)"),
crayon_body(" to avoid conflicts when generating the Seurat assay.")), call. = FALSE)
names.use <- stringr::str_replace_all(names(input_gene_list), "_", ".")
names(input_gene_list) <- names.use
}
# Step 2: make the lists of equal length.
max_value <- max(unname(unlist(lapply(input_gene_list, length))))
min_value <- min(unname(unlist(lapply(input_gene_list, length))))
assertthat::assert_that(length(input_gene_list) >= 2,
msg = paste0(add_cross,
crayon_body("Please make sure that the gene list you provide to "),
crayon_key("input_gene_list"),
crayon_body(" have at least "),
crayon_key("two different"),
crayon_body(" gene sets.")))
assertthat::assert_that(min_value >= 5,
msg = paste0(add_cross,
crayon_body("Please make sure that the gene list you provide to "),
crayon_key("input_gene_list"),
crayon_body(" have at least "),
crayon_key("five genes"),
crayon_body(" each.")))
# Add fake genes until all lists have the same length so that it can be converted into a tibble.
gene_list <- lapply(input_gene_list, function(x){
if (length(x) != max_value){
remaining <- max_value - length(x)
x <- append(x, rep("deleteme", remaining))
x
} else{
x
}
})
# Generate the network as a tibble and filter out fake genes.
network <- gene_list %>%
tibble::as_tibble() %>%
tidyr::pivot_longer(cols = dplyr::everything(),
names_to = "source",
values_to = "target") %>%
dplyr::mutate("mor" = 1) %>%
dplyr::filter(.data$target != "deleteme")
# Get expression data.
suppressWarnings({
mat <- SeuratObject::GetAssayData(sample,
assay = assay,
slot = slot)
})
# Compute activities.
if(isTRUE(verbose)){message(paste0(add_info(), crayon_body("Computing "),
crayon_key("activities"),
crayon_body("...")))}
if (statistic == "ulm"){
acts <- decoupleR::run_ulm(mat = mat,
network = network)
} else {
acts <- decoupleR::run_wmean(mat = mat,
network = network)
}
# Turn them into a matrix compatible to turn into a Seurat assay.
acts.matrix <- acts %>%
dplyr::filter(.data$statistic == .env$statistic) %>%
tidyr::pivot_wider(id_cols = dplyr::all_of("source"),
names_from = "condition",
values_from = "score") %>%
tibble::column_to_rownames('source')
# Generate a Seurat assay.
assay.add <- Seurat::CreateAssayObject(acts.matrix)
# Add the assay to the Seurat object.
sample@assays$affinity <- assay.add
sample@assays$affinity@key <- "affinity_"
# Set it as default assay.
Seurat::DefaultAssay(sample) <- "affinity"
# Scale and center the activity data.
sample <- Seurat::ScaleData(sample, verbose = FALSE, assay = "affinity")
# Plotting.
# Get the data frames per group.by value for plotting.
list.data <- list()
counter <- 0
for (group in group.by){
counter <- counter + 1
suppressWarnings({
data.use <- SeuratObject::GetAssayData(sample,
assay = "affinity",
slot = "scale.data") %>%
t() %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::left_join(y = {sample@meta.data %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::select(dplyr::all_of(c("cell", group)))},
by = "cell") %>%
tidyr::pivot_longer(cols = -dplyr::all_of(c("cell", group)),
names_to = "source",
values_to = "score")
})
# Clustering based on the median across all cells.
data.cluster <- data.use %>%
tidyr::pivot_wider(id_cols = dplyr::all_of(c("cell", group)),
names_from = "source",
values_from = "score") %>%
dplyr::group_by(.data[[group]]) %>%
dplyr::summarise(dplyr::across(.cols = dplyr::all_of(c(names(input_gene_list))),
function(x){stats::median(x, na.rm = TRUE)})) %>%
as.data.frame() %>%
tibble::column_to_rownames(var = group)
list.data[[group]][["data"]] <- data.use
list.data[[group]][["data.cluster"]] <- data.cluster
}
# Plot individual heatmaps.
list.heatmaps <- list()
counter <- 0
row.order.list <- list()
for (group in group.by){
counter <- counter + 1
data.use <- list.data[[group]][["data"]]
data.cluster <- list.data[[group]][["data.cluster"]]
# nocov start
if (counter == 1){
if (length(colnames(data.cluster)) == 1){
col_order <- colnames(data.cluster)[1]
} else {
col_order <- colnames(data.cluster)[stats::hclust(stats::dist(t(data.cluster), method = "euclidean"), method = "ward.D")$order]
}
}
# nocov end
if(length(rownames(data.cluster)) == 1){
row_order <- rownames(data.cluster)[1]
} else {
row_order <- rownames(data.cluster)[stats::hclust(stats::dist(data.cluster, method = "euclidean"), method = "ward.D")$order]
}
row.order.list[[group]] <- row_order
data.use <- data.use %>%
dplyr::group_by(.data[[group]], .data$source) %>%
dplyr::summarise("mean" = mean(.data$score, na.rm = TRUE))
list.data[[group]][["data.mean"]] <- data.use
if (!is.na(min.cutoff)){
data.use <- data.use %>%
dplyr::mutate("mean" = ifelse(.data$mean < min.cutoff, min.cutoff, .data$mean))
}
if (!is.na(max.cutoff)){
data.use <- data.use %>%
dplyr::mutate("mean" = ifelse(.data$mean > max.cutoff, max.cutoff, .data$mean))
}
p <- data.use %>%
dplyr::mutate("source" = factor(.data$source, levels = col_order),
"target" = factor(.data[[group]], levels = row_order)) %>%
# nocov start
ggplot2::ggplot(mapping = ggplot2::aes(x = if (isTRUE(flip)){.data$source} else {.data$target},
y = if (isTRUE(flip)){.data$target} else {.data$source},
fill = .data$mean)) +
# nocov end
ggplot2::geom_tile(color = grid.color, linewidth = 0.5, na.rm = TRUE) +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
# nocov start
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(if (isTRUE(flip)){.data$target} else {.data$source}))),
x.sec = guide_axis_label_trans(~paste0(levels(if (isTRUE(flip)){.data$source} else {.data$target})))) +
# nocov end
ggplot2::coord_equal()
list.heatmaps[[group]] <- p
}
# Compute limits.
min.vector <- NULL
max.vector <- NULL
for (group in group.by){
data.limits <- list.data[[group]][["data.mean"]]
min.vector <- append(min.vector, min(data.limits$mean, na.rm = TRUE))
max.vector <- append(max.vector, max(data.limits$mean, na.rm = TRUE))
}
# Get the absolute limits of the datasets.
limits <- c(min(min.vector, na.rm = TRUE),
max(max.vector, na.rm = TRUE))
# Compute overarching scales for all heatmaps.
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = assay,
reduction = NULL,
slot = slot,
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = enforce_symmetry,
from_data = TRUE,
limits.use = limits)
for (group in group.by){
p <- list.heatmaps[[group]]
p <- p +
ggplot2::scale_fill_gradientn(colors = colors.gradient,
na.value = na.value,
name = paste0("Z-scored | ", statistic, " score"),
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
list.heatmaps[[group]] <- p
}
# Modify legends.
for (group in group.by){
p <- list.heatmaps[[group]]
p <- modify_continuous_legend(p = p,
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
list.heatmaps[[group]] <- p
}
# Add theme
counter <- 0
for (group in group.by){
counter <- counter + 1
p <- list.heatmaps[[group]]
# Set axis titles.
if (isTRUE(flip)){
if (counter == 1){
ylab <- group
xlab <- NULL
if (length(group.by) == counter){
xlab <- "Gene set"
}
} else {
xlab <- "Gene set"
ylab <- group
}
} else {
if (counter == 1){
ylab <- "Gene set"
xlab <- group
} else {
ylab <- NULL
xlab <- group
}
}
p <- list.heatmaps[[group]]
axis.parameters <- handle_axis(flip = !flip,
group.by = rep("A", length(group.by)),
group = group,
counter = counter,
axis.text.x.angle = axis.text.x.angle,
plot.title.face = plot.title.face,
plot.subtitle.face = plot.subtitle.face,
plot.caption.face = plot.caption.face,
axis.title.face = axis.title.face,
axis.text.face = axis.text.face,
legend.title.face = legend.title.face,
legend.text.face = legend.text.face)
p <- p +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = axis.parameters$axis.ticks.x.bottom,
axis.ticks.x.top = axis.parameters$axis.ticks.x.top,
axis.ticks.y.left = axis.parameters$axis.ticks.y.left,
axis.ticks.y.right = axis.parameters$axis.ticks.y.right,
axis.text.y.left = axis.parameters$axis.text.y.left,
axis.text.y.right = axis.parameters$axis.text.y.right,
axis.text.x.top = axis.parameters$axis.text.x.top,
axis.text.x.bottom = axis.parameters$axis.text.x.bottom,
axis.title.x.bottom = axis.parameters$axis.title.x.bottom,
axis.title.x.top = axis.parameters$axis.title.x.top,
axis.title.y.right = axis.parameters$axis.title.y.right,
axis.title.y.left = axis.parameters$axis.title.y.left,
strip.background = axis.parameters$strip.background,
strip.clip = axis.parameters$strip.clip,
strip.text = axis.parameters$strip.text,
legend.position = legend.position,
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 0, r = 0, b = 0, l = 0),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.spacing.x = ggplot2::unit(0, "cm"))
list.heatmaps[[group]] <- p
}
if (isTRUE(flip)){
list.heatmaps <- list.heatmaps[rev(group.by)]
}
p <- patchwork::wrap_plots(list.heatmaps,
ncol = if (base::isFALSE(flip)){NULL} else {1},
nrow = if(base::isFALSE(flip)){1} else {NULL},
guides = "collect")
p <- p +
patchwork::plot_annotation(theme = ggplot2::theme(legend.position = legend.position,
plot.title = ggplot2::element_text(family = font.type,
color = "black",
face = "bold",
hjust = 0),
plot.subtitle = ggplot2::element_text(family = font.type,
color = "black",
hjust = 0),
plot.caption = ggplot2::element_text(family = font.type,
color = "black",
hjust = 1),
plot.caption.position = "plot"))
list.output <- list()
list.output[["Heatmap"]] <- p
if (isTRUE(return_object)){
list.output[["Object"]] <- sample
}
if (isTRUE(return_object)){
return_me <- list.output
} else {
return_me <- list.output$Heatmap
}
return(return_me)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.