## plot_heatmap.r: Heatmaps separated by usage
#' Make a heatmap.3 description of the correlation between samples.
#'
#' Given a set of count tables and design, this will calculate the pairwise
#' correlations and plot them as a heatmap. It attempts to standardize the
#' inputs and eventual output.
#'
#' @param expt_data Dataframe, expt, or expressionset to work with.
#' @param expt_colors Color scheme for the samples, not needed if this is an expt.
#' @param expt_design Design matrix describing the experiment, not needed if this is an expt.
#' @param method Correlation statistic to use. (pearson, spearman, kendall, robust).
#' @param expt_names Alternate names to use for the samples.
#' @param batch_row Name of the design row used for 'batch' column colors.
#' @param plot_title Title for the plot.
#' @param label_chars Limit on the number of label characters.
#' @param ... More options are wonderful!
#' @return Gplots heatmap describing describing how the samples are clustering
#' vis a vis pairwise correlation.
#' @seealso [grDevice] [gplot2::heatmap.2()]
#' @examples
#' \dontrun{
#' corheat_plot <- hpgl_corheat(expt = expt, method = "robust")
#' }
#' @export
plot_corheat <- function(expt_data, expt_colors = NULL, expt_design = NULL,
method = "pearson", expt_names = NULL,
batch_row = "batch", plot_title = NULL, label_chars = 10, ...) {
map_list <- plot_heatmap(expt_data, expt_colors = expt_colors, expt_design = expt_design,
method = method, expt_names = expt_names, type = "correlation",
batch_row = batch_row, plot_title = plot_title, label_chars = label_chars, ...)
class(map_list) <- "correlation_heatmap"
return(map_list)
}
#' Make a heatmap.3 of the distances (euclidean by default) between samples.
#'
#' Given a set of count tables and design, this will calculate the pairwise
#' distances and plot them as a heatmap. It attempts to standardize the inputs
#' and eventual output.
#'
#' @param expt_data Dataframe, expt, or expressionset to work with.
#' @param expt_colors Color scheme (not needed if an expt is provided).
#' @param expt_design Design matrix (not needed if an expt is provided).
#' @param method Distance metric to use.
#' @param expt_names Alternate names to use for the samples.
#' @param batch_row Name of the design row used for 'batch' column colors.
#' @param plot_title Title for the plot.
#' @param label_chars Limit on the number of label characters.
#' @param ... More parameters!
#' @return a recordPlot() heatmap describing the distance between samples.
#' @seealso [gplots::heatmap.2()]
#' @examples
#' \dontrun{
#' disheat_plot = plot_disheat(expt = expt, method = "euclidean")
#' }
#' @export
plot_disheat <- function(expt_data, expt_colors = NULL, expt_design = NULL,
method = "euclidean", expt_names = NULL,
batch_row = "batch", plot_title = NULL, label_chars = 10, ...) {
map_list <- plot_heatmap(expt_data, expt_colors = expt_colors, expt_design = expt_design,
method = method, expt_names = expt_names, type = "distance",
batch_row = batch_row, plot_title = plot_title,
label_chars = label_chars, ...)
class(map_list) <- "distance_heatmap"
return(map_list)
}
#' Make a heatmap.3 plot, does the work for plot_disheat and plot_corheat.
#'
#' This does what is says on the tin. Sets the colors for correlation or
#' distance heatmaps, handles the calculation of the relevant metrics, and plots
#' the heatmap.
#'
#' @param expt_data Dataframe, expt, or expressionset to work with.
#' @param expt_colors Color scheme for the samples.
#' @param expt_design Design matrix describing the experiment vis a vis
#' conditions and batches.
#' @param method Distance or correlation metric to use.
#' @param expt_names Alternate names to use for the samples.
#' @param type Defines the use of correlation, distance, or sample heatmap.
#' @param batch_row Name of the design row used for 'batch' column colors.
#' @param plot_title Title for the plot.
#' @param label_chars Limit on the number of label characters.
#' @param ... I like elipses!
#' @return a recordPlot() heatmap describing the distance between samples.
#' @seealso [gplots::heatmap.2()]
#' @export
plot_heatmap <- function(expt_data, expt_colors = NULL, expt_design = NULL,
method = "pearson", expt_names = NULL,
type = "correlation", batch_row = "batch", plot_title = NULL,
label_chars = 10, ...) {
arglist <- list(...)
margin_list <- c(12, 9)
if (!is.null(arglist[["margin_list"]])) {
margin_list <- arglist[["margin_list"]]
}
chosen_palette <- "Dark2"
if (!is.null(arglist[["palette"]])) {
chosen_palette <- arglist[["palette"]]
}
keysize <- 2
if (!is.null(arglist[["keysize"]])) {
keysize <- arglist[["keysize"]]
}
remove_equal <- FALSE
if (!is.null(arglist[["remove_equal"]])) {
remove_equal <- arglist[["remove_equal"]]
}
if (is.null(expt_colors)) {
num_cols <- ncol(expt_data)
expt_colors <- sm(grDevices::colorRampPalette(
RColorBrewer::brewer.pal(num_cols, chosen_palette))(num_cols))
}
expt_colors <- as.character(expt_colors)
if (is.null(expt_names)) {
expt_names <- colnames(expt_data)
} else {
if (class(expt_names) == "character" && length(expt_names) == 1) {
## Then this refers to an experimental metadata column.
expt_names <- expt_design[[expt_names]]
}
}
if (!is.null(label_chars) && is.numeric(label_chars)) {
expt_names <- abbreviate(expt_names, minlength = label_chars)
}
if (isTRUE(remove_equal)) {
cv_min <- 1
if (!is.null(arglist[["cv_min"]])) {
cv_min <- arglist[["cv_min"]]
}
cv_max <- Inf
if (!is.null(arglist[["cv_max"]])) {
cv_min <- arglist[["cv_max"]]
}
test <- genefilter::cv(cv_min, cv_max)
filter_list <- genefilter::filterfun(test)
answer <- genefilter::genefilter(expt_data, filter_list)
expt_data <- expt_data[answer, ]
}
heatmap_data <- NULL
heatmap_colors <- NULL
if (type == "correlation") {
heatmap_data <- hpgl_cor(expt_data, method = method)
heatmap_colors <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(9, "OrRd"))(100)
if (method == "cordist") {
heatmap_colors <- grDevices::colorRampPalette(
c("yellow2", "goldenrod", "darkred"),
bias = 0.5)(100)
}
} else if (type == "distance") {
heatmap_data <- as.matrix(dist(t(expt_data)), method = method)
heatmap_colors <- grDevices::colorRampPalette(
RColorBrewer::brewer.pal(9, "GnBu"))(100)
} else {
heatmap_colors <- gplots::redgreen(75)
heatmap_data <- as.matrix(expt_data)
}
## Set the batch colors depending on # of observed batches
if (is.null(expt_design)) {
row_colors <- rep("white", length(expt_colors))
} else if (is.null(expt_design[[batch_row]])) {
row_colors <- rep("white", length(expt_colors))
} else if (length(levels(as.factor(expt_design[[batch_row]]))) >= 2) {
## We have >= 2 batches, and so will fill in the column colors
num_batch_colors <- length(levels(as.factor(expt_design[[batch_row]])))
batch_color_assignments <- as.integer(as.factor(expt_design[[batch_row]]))
row_colors <- RColorBrewer::brewer.pal(12, "Set3")[batch_color_assignments]
} else {
## If we just have 1 batch, make it... white (to disappear).
row_colors <- rep("white", length(expt_colors))
}
map <- NULL
na_idx <- is.na(heatmap_data)
heatmap_data[na_idx] <- 0
tmp_file <- tmpmd5file(pattern = "heat", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
if (type == "correlation") {
map <- heatmap.3(heatmap_data, keysize = keysize, labRow = expt_names,
labCol = expt_names, ColSideColors = expt_colors,
RowSideColors = row_colors, margins = margin_list,
scale = "none", trace = "none",
linewidth = 0.5, main = plot_title, ...)
} else {
map <- heatmap.3(heatmap_data, keysize = keysize, labRow = expt_names,
labCol = expt_names, ColSideColors = expt_colors,
RowSideColors = row_colors, margins = margin_list,
scale = "none", trace = "none",
linewidth = 0.5, main = plot_title,
col = rev(heatmap_colors), ...)
}
recorded_heatmap_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
retlist <- list("map" = map,
"plot" = recorded_heatmap_plot,
"data" = heatmap_data)
return(retlist)
}
setGeneric("plot_heatmap")
#' Potential replacement for heatmap.2 based plots.
#'
#' Heatplus is an interesting tool, I have a few examples of using it and intend
#' to include them here.
#'
#' @param expt Experiment to try plotting.
#' @param type What comparison method to use on the data (distance or correlation)?
#' @param method What distance/correlation method to perform?
#' @param annot_columns Set of columns to include as terminal columns next to the heatmap.
#' @param annot_rows Set of columns to include as terminal rows below the heatmap.
#' @param cutoff Cutoff used to define color changes in the annotated clustering.
#' @param cluster_colors Choose colors for the clustering?
#' @param scale Scale the heatmap colors?
#' @param cluster_width How much space to include between clustering?
#' @param cluster_function Choose an alternate clustering function than hclust()?
#' @param heatmap_colors Choose your own heatmap cluster palette?
#' @return List containing the returned heatmap along with some parameters used to create it.
#' @seealso [Heatplus] [fastcluster]
#' @export
plot_heatplus <- function(expt, type = "correlation", method = "pearson", annot_columns = "batch",
annot_rows = "condition", cutoff = 1.0,
cluster_colors = NULL, scale = "none",
cluster_width = 2.0, cluster_function = NULL, heatmap_colors = NULL) {
data <- exprs(expt)
if (type == "correlation") {
data <- hpgl_cor(data, method = method)
} else {
data <- hpgl_dist(data, method = "euclidean")
}
if (is.null(cluster_function)) {
cluster_function <- fastcluster::hclust
}
mydendro <- list(
"clustfun" = cluster_function,
"lwd" = cluster_width)
des <- pData(expt)
col_data <- as.data.frame(des[, annot_columns])
colnames(col_data) <- annot_columns
row_data <- as.data.frame(des[, annot_rows])
colnames(row_data) <- annot_rows
myannot <- list(
"inclRef" = FALSE,
"Col" = list("data" = col_data),
"Row" = list("data" = row_data))
if (is.null(cluster_colors)) {
cluster_colors <- Heatplus::BrewerClusterCol
}
myclust <- list("cuth" = cutoff,
"col" = cluster_colors)
mylabs <- list(
"Row" = list("nrow" = 4),
"Col" = list("nrow" = 4))
first_map <- Heatplus::annHeatmap2(data, dendrogram = mydendro, annotation = myannot,
cluster = myclust, labels = mylabs)
number_colors <- length(levels(as.factor(first_map[["data"]][["x"]])))
if (is.null(heatmap_colors)) {
heatmap_colors <- colorRampPalette(c("darkblue", "beige"))(number_colors)
}
if (is.null(cluster_colors)) {
num_clusters <- max(first_map[["cluster"]][["Row"]][["grp"]])
chosen_palette <- "Dark2"
new_colors <- sm(grDevices::colorRampPalette(
RColorBrewer::brewer.pal(
num_clusters, chosen_palette))(num_clusters))
}
myclust <- list("cuth" = 1.0,
"col" = new_colors)
final_map <- Heatplus::annHeatmap2(
data, dendrogram = mydendro, annotation = myannot,
cluster = myclust, labels = mylabs, scale = scale, col = heatmap_colors)
tmp_file <- tmpmd5file(pattern = "heat", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
plot(final_map)
rec_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
retlist <- list(
"annotations" = myannot,
"clusters" = myclust,
"labels" = mylabs,
"colors" = heatmap_colors,
"first_map" = first_map,
"map" = final_map,
"plot" = rec_plot)
return(retlist)
}
#' Make a heatmap.3 description of the similarity of the genes among samples.
#'
#' Sometimes you just want to see how the genes of an experiment are related to
#' each other. This can handle that. These heatmap functions should probably
#' be replaced with neatmaps or heatplus or whatever it is, as the annotation
#' dataframes in them are pretty awesome.
#'
#' @param data Expt/expressionset/dataframe set of samples.
#' @param colors Color scheme of the samples (not needed if input is an expt).
#' @param design Design matrix describing the experiment (gotten for free if an expt).
#' @param heatmap_colors Specify a colormap.
#' @param expt_names Alternate samples names.
#' @param dendrogram Where to put dendrograms?
#' @param row_label Passed through to heatmap.2.
#' @param plot_title Title of the plot!
#' @param Rowv Reorder the rows by expression?
#' @param Colv Reorder the columns by expression?
#' @param label_chars Maximum number of characters before abbreviating sample names.
#' @param filter Filter the data before performing this plot?
#' @param ... More parameters for a good time!
#' @return a recordPlot() heatmap describing the samples.
#' @seealso [gplots::heatmap.2()]
#' @export
plot_sample_heatmap <- function(data, colors = NULL, design = NULL, heatmap_colors = NULL,
expt_names = NULL, dendrogram = "column",
row_label = NA, plot_title = NULL, Rowv = TRUE,
Colv = TRUE, label_chars = 10, filter = TRUE, ...) {
data <- as.data.frame(data)
if (is.null(heatmap_colors)) {
heatmap_colors <- gplots::redgreen(75)
}
if (is.null(names)) {
names <- colnames(data)
}
data <- as.matrix(data)
if (is.null(expt_names)) {
expt_names <- colnames(data)
} else {
if (class(expt_names) == "character" && length(expt_names) == 1) {
## Then this refers to an experimental metadata column.
expt_names <- design[[expt_names]]
}
}
if (!is.null(label_chars) && is.numeric(label_chars)) {
expt_names <- abbreviate(expt_names, minlength = label_chars)
}
## drop NAs to help hclust()
na_idx <- is.na(data)
data[na_idx] <- -20
tmp_file <- tmpmd5file(pattern = "heat", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
heatmap.3(data, keysize = 0.8, labRow = row_label, col = heatmap_colors, dendrogram = dendrogram,
labCol = expt_names, margins = c(12, 8), trace = "none", ColSideColors = colors,
linewidth = 0.5, main = plot_title, Rowv = Rowv, Colv = Colv)
hpgl_heatmap_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
return(hpgl_heatmap_plot)
}
setGeneric("plot_sample_heatmap")
#' An experiment to see if I can visualize the genes with the highest variance.
#'
#' @param expt ExpressionSet
#' @param fun mean or median
#' @param fact Which factor to slice/dice the data?
#' @param row_label Label the rows?
#' @param plot_title Title for the plot
#' @param Rowv Row vs (yeah I forgot what this does.)
#' @param Colv Col vs
#' @param label_chars Maximum number of characters in the sample IDs.
#' @param dendrogram Make a tree of the samples?
#' @param min_delta Minimum delta value for filtering
#' @param x_factor When plotting two factors against each other, which is x?
#' @param y_factor When plotting two factors against each other, which is y?
#' @param min_cvsd Include only those with a minimal CV?
#' @param cv_min Minimum cv to examine (I think this should be slightly lower)
#' @param cv_max Maximum cV to examine (I think this should be limited to ~ 0.7?)
#' @param remove_equal Filter uninteresting genes.
#' @export
plot_sample_cvheatmap <- function(expt, fun = "mean", fact = "condition",
row_label = NA, plot_title = NULL, Rowv = TRUE,
Colv = TRUE, label_chars = 10, dendrogram = "column",
min_delta = 0.5, x_factor = 1, y_factor = 2, min_cvsd = NULL,
cv_min = 1, cv_max = Inf, remove_equal = TRUE) {
## I am certain there is a better way to do this, but I am tired and not thinking well.
colors <- c()
expt_colors <- expt[["colors"]]
fact_info <- pData(expt)[[fact]]
names(expt_colors) <- fact_info
for (i in seq_along(expt_colors)) {
name <- names(expt_colors)[i]
this_color <- as.character(expt_colors[i])
colors[name] <- this_color
}
if (isTRUE(remove_equal)) {
expt <- normalize_expt(expt, filter = "cv", cv_min = 1, cv_max = Inf)
}
cvs <- as.matrix(median_by_factor(expt, fun = fun, fact = fact)[["cvs"]])
if (!is.null(min_cvsd)) {
cv_sds <- matrixStats::rowSds(cvs)
if (is.numeric(min_cvsd)) {
keepers <- cv_sds >= min_cvsd
} else if (is.character(min_cvsd)) {
## Min. 1st Qu. Median ...
min_cvsd <- summary(cv_sds)[[min_cvsd]]
keepers <- cv_sds >= min_cvsd
} else {
keepers <- cv_sds >= summary(cv_sds)[5]
}
cvs <- cvs[keepers, ]
}
heatmap_colors <- gplots::redgreen(75)
if (is.null(names)) {
names <- colnames(data)
}
tmp_file <- tmpmd5file(pattern = "heat", fileext = ".png")
this_plot <- png(filename = tmp_file)
controlled <- dev.control("enable")
heatmap.3(cvs, keysize = 0.8, labRow = rownames(cvs), col = heatmap_colors, dendrogram = dendrogram,
margins = c(12, 8), trace = "none", ColSideColors = colors,
linewidth = 0.5, main = plot_title, Rowv = Rowv, Colv = Colv)
cv_heatmap_plot <- grDevices::recordPlot()
dev.off()
removed <- suppressWarnings(file.remove(tmp_file))
removed <- unlink(dirname(tmp_file))
point_df <- cvs[, c(x_factor, y_factor)]
return(cv_heatmap_plot)
}
#' a minor change to heatmap.2 makes heatmap.3
#'
#' heatmap.2 is the devil.
#'
#' @param x data
#' @param Rowv add rows?
#' @param Colv add columns?
#' @param distfun distance function to use
#' @param hclustfun clustering function to use
#' @param dendrogram which axes to put trees on
#' @param reorderfun reorder the rows/columns?
#' @param symm symmetrical?
#' @param scale add the scale?
#' @param na.rm remove nas from the data?
#' @param revC reverse the columns?
#' @param add.expr no clue
#' @param breaks also no clue
#' @param symbreaks still no clue
#' @param col colors!
#' @param colsep column separator
#' @param rowsep row separator
#' @param sepcolor color to put between columns/rows
#' @param sepwidth how much to separate
#' @param cellnote mur?
#' @param notecex size of the notes
#' @param notecol color of the notes
#' @param na.color a parameter call to bg
#' @param trace do a trace for rows/columns?
#' @param tracecol color of the trace
#' @param hline the hline
#' @param vline the vline
#' @param linecol the line color
#' @param margins margins are good
#' @param ColSideColors colors for the columns as annotation
#' @param RowSideColors colors for the rows as annotation
#' @param cexRow row size
#' @param cexCol column size
#' @param labRow hmmmm
#' @param labCol still dont know
#' @param srtRow srt the row?
#' @param srtCol srt the column?
#' @param adjRow adj the row?
#' @param adjCol adj the column?
#' @param offsetRow how far to place the text from the row
#' @param offsetCol how far to place the text from the column
#' @param key add a key?
#' @param keysize if so, how big?
#' @param density.info for the key, what information to add
#' @param denscol tracecol hmm ok
#' @param symkey I like keys
#' @param densadj adj the dens?
#' @param key.title title for the key
#' @param key.xlab text for the x axis of the key
#' @param key.ylab text for the y axis of the key
#' @param key.xtickfun add text to the ticks of the key x axis
#' @param key.ytickfun add text to the ticks of the key y axis
#' @param key.par parameters for the key
#' @param main the main title of the plot
#' @param xlab main x label
#' @param ylab main y label
#' @param lmat the lmat
#' @param lhei the lhei
#' @param lwid the lwid
#' @param extrafun I do enjoy me some extra fun
#' @param linewidth the width of lines
#' @param ... because this function did not already have enough options
#' @return a heatmap!
#' @seealso \code{\link[gplots]{heatmap.2}}
#' @export
heatmap.3 <- function(x, Rowv = TRUE, Colv = if (symm) "Rowv" else TRUE,
distfun = dist, hclustfun = fastcluster::hclust,
dendrogram = c("both", "row", "column", "none"),
reorderfun = function(d, w) reorder(d, w),
symm = FALSE, scale = c("none", "row", "column"),
na.rm = TRUE, revC = identical(Colv, "Rowv"), add.expr, breaks,
symbreaks = min(x < 0, na.rm = TRUE) || scale != "none",
col = "heat.colors", colsep, rowsep, sepcolor = "white",
sepwidth = c(0.05, 0.05), cellnote, notecex = 1, notecol = "cyan",
na.color = par("bg"), trace = c("column", "row", "both", "none"),
tracecol = "cyan", hline = median(breaks), vline = median(breaks),
linecol = tracecol, margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc), labRow = NULL,
labCol = NULL, srtRow = NULL, srtCol = NULL, adjRow = c(0, NA),
adjCol = c(NA, 0), offsetRow = 0.5, offsetCol = 0.5,
key = TRUE, keysize = 1.5, density.info = c("histogram", "density", "none"),
denscol = tracecol, symkey = min(x < 0, na.rm = TRUE) || symbreaks, densadj = 0.25,
key.title = NULL, key.xlab = NULL, key.ylab = NULL, key.xtickfun = NULL,
key.ytickfun = NULL, key.par = list(), main = NULL, xlab = NULL, ylab = NULL,
lmat = NULL, lhei = NULL, lwid = NULL, extrafun = NULL, linewidth = 1.0, ...) {
if (!is.null(main)) {
if (main == FALSE) {
main <- NULL
}
}
scale01 <- function(x, low = min(x), high = max(x)) {
x <- (x - low) / (high - low)
x
}
retval <- list()
scale <- if (symm && missing(scale))
"none"
else match.arg(scale)
dendrogram <- match.arg(dendrogram)
trace <- match.arg(trace)
density.info <- match.arg(density.info)
if (length(col) == 1 && is.character(col))
col <- get(col, mode = "function")
if (!missing(breaks) && (scale != "none"))
warning("Using scale=\"row\" or scale=\"column\" when breaks are",
"specified can produce unpredictable results.",
"Please consider using only one or the other.")
if (is.null(Rowv) || is.na(Rowv))
Rowv <- FALSE
if (is.null(Colv) || is.na(Colv))
Colv <- FALSE
else if (Colv == "Rowv" && !isTRUE(Rowv))
Colv <- FALSE
if (length(di <- dim(x)) != 2 || !is.numeric(x))
stop("`x' must be a numeric matrix")
nr <- di[1]
nc <- di[2]
if (nr <= 1 || nc <= 1)
stop("`x' must have at least 2 rows and 2 columns")
if (!is.numeric(margins) || length(margins) != 2)
stop("`margins' must be a numeric vector of length 2")
if (missing(cellnote))
cellnote <- matrix("", ncol = ncol(x), nrow = nrow(x))
if (!inherits(Rowv, "dendrogram")) {
if (((!isTRUE(Rowv)) || (is.null(Rowv))) && (dendrogram %in%
c("both", "row"))) {
if (is.logical(Colv) && (Colv))
dendrogram <- "column"
else dendrogram <- "none"
warning("Discrepancy: Rowv is FALSE, while dendrogram is `",
dendrogram, "'. Omitting row dendogram.")
}
}
if (!inherits(Colv, "dendrogram")) {
if (((!isTRUE(Colv)) || (is.null(Colv))) && (dendrogram %in%
c("both", "column"))) {
if (is.logical(Rowv) && (Rowv))
dendrogram <- "row"
else dendrogram <- "none"
warning("Discrepancy: Colv is FALSE, while dendrogram is `",
dendrogram, "'. Omitting column dendogram.")
}
}
if (inherits(Rowv, "dendrogram")) {
ddr <- Rowv
rowInd <- order.dendrogram(ddr)
if (length(rowInd) > nr || any(rowInd < 1 | rowInd >
nr))
stop("Rowv dendrogram doesn't match size of x")
}
else if (is.integer(Rowv)) {
hcr <- hclustfun(distfun(x))
ddr <- as.dendrogram(hcr)
ddr <- reorderfun(ddr, Rowv)
rowInd <- order.dendrogram(ddr)
if (nr != length(rowInd))
stop("row dendrogram ordering gave index of wrong length")
}
else if (isTRUE(Rowv)) {
Rowv <- rowMeans(x, na.rm = na.rm)
hcr <- hclustfun(distfun(x))
ddr <- as.dendrogram(hcr)
ddr <- reorderfun(ddr, Rowv)
rowInd <- order.dendrogram(ddr)
if (nr != length(rowInd))
stop("row dendrogram ordering gave index of wrong length")
}
else {
rowInd <- nr:1
}
if (inherits(Colv, "dendrogram")) {
ddc <- Colv
colInd <- order.dendrogram(ddc)
if (length(colInd) > nc || any(colInd < 1 | colInd >
nc))
stop("Colv dendrogram doesn't match size of x")
}
else if (identical(Colv, "Rowv")) {
if (nr != nc)
stop("Colv = \"Rowv\" but nrow(x) != ncol(x)")
if (exists("ddr")) {
ddc <- ddr
colInd <- order.dendrogram(ddc)
}
else colInd <- rowInd
}
else if (is.integer(Colv)) {
hcc <- hclustfun(distfun(if (symm)
x
else t(x)))
ddc <- as.dendrogram(hcc)
ddc <- reorderfun(ddc, Colv)
colInd <- order.dendrogram(ddc)
if (nc != length(colInd))
stop("column dendrogram ordering gave index of wrong length")
}
else if (isTRUE(Colv)) {
Colv <- colMeans(x, na.rm = na.rm)
hcc <- hclustfun(distfun(if (symm)
x
else t(x)))
ddc <- as.dendrogram(hcc)
ddc <- reorderfun(ddc, Colv)
colInd <- order.dendrogram(ddc)
if (nc != length(colInd))
stop("column dendrogram ordering gave index of wrong length")
}
else {
colInd <- 1:nc
}
retval$rowInd <- rowInd
retval$colInd <- colInd
retval$call <- match.call()
x <- x[rowInd, colInd]
x.unscaled <- x
cellnote <- cellnote[rowInd, colInd]
if (is.null(labRow))
labRow <- if (is.null(rownames(x)))
(1:nr)[rowInd]
else rownames(x)
else labRow <- labRow[rowInd]
if (is.null(labCol))
labCol <- if (is.null(colnames(x)))
(1:nc)[colInd]
else colnames(x)
else labCol <- labCol[colInd]
if (scale == "row") {
retval$rowMeans <- rm <- rowMeans(x, na.rm = na.rm)
x <- sweep(x, 1, rm)
retval$rowSDs <- sx <- apply(x, 1, sd, na.rm = na.rm)
x <- sweep(x, 1, sx, "/")
}
else if (scale == "column") {
retval$colMeans <- rm <- colMeans(x, na.rm = na.rm)
x <- sweep(x, 2, rm)
retval$colSDs <- sx <- apply(x, 2, sd, na.rm = na.rm)
x <- sweep(x, 2, sx, "/")
}
if (missing(breaks) || is.null(breaks) || length(breaks) <
1) {
if (missing(col) || is.function(col))
breaks <- 16
else breaks <- length(col) + 1
}
if (length(breaks) == 1) {
if (!symbreaks)
breaks <- seq(min(x, na.rm = na.rm), max(x, na.rm = na.rm),
length = breaks)
else {
extreme <- max(abs(x), na.rm = TRUE)
breaks <- seq(-extreme, extreme, length = breaks)
}
}
nbr <- length(breaks)
ncol <- length(breaks) - 1
if (class(col) == "function")
col <- col(ncol)
min.breaks <- min(breaks)
max.breaks <- max(breaks)
x[x < min.breaks] <- min.breaks
x[x > max.breaks] <- max.breaks
if (missing(lhei) || is.null(lhei))
lhei <- c(keysize, 4)
if (missing(lwid) || is.null(lwid))
lwid <- c(keysize, 4)
if (missing(lmat) || is.null(lmat)) {
lmat <- rbind(4:3, 2:1)
if (!missing(ColSideColors)) {
if (!is.character(ColSideColors) || length(ColSideColors) !=
nc)
stop("'ColSideColors' must be a character vector of length ncol(x)")
lmat <- rbind(lmat[1, ] + 1, c(NA, 1), lmat[2, ] +
1)
lhei <- c(lhei[1], 0.2, lhei[2])
}
if (!missing(RowSideColors)) {
if (!is.character(RowSideColors) || length(RowSideColors) !=
nr)
stop("'RowSideColors' must be a character vector of length nrow(x)")
lmat <- cbind(lmat[, 1] + 1, c(rep(NA, nrow(lmat) -
1), 1), lmat[, 2] + 1)
lwid <- c(lwid[1], 0.2, lwid[2])
}
lmat[is.na(lmat)] <- 0
}
if (length(lhei) != nrow(lmat))
stop("lhei must have length = nrow(lmat) = ", nrow(lmat))
if (length(lwid) != ncol(lmat))
stop("lwid must have length = ncol(lmat) =", ncol(lmat))
op <- par(no.readonly = TRUE)
on.exit(par(op))
layout(lmat, widths = lwid, heights = lhei, respect = FALSE)
if (!missing(RowSideColors)) {
par(mar = c(margins[1], 0, 0, 0.5))
image(rbind(1:nr), col = RowSideColors[rowInd], axes = FALSE)
}
if (!missing(ColSideColors)) {
par(mar = c(0.5, 0, 0, margins[2]))
image(cbind(1:nc), col = ColSideColors[colInd], axes = FALSE)
}
par(mar = c(margins[1], 0, 0, margins[2]))
x <- t(x)
cellnote <- t(cellnote)
if (revC) {
iy <- nr:1
if (exists("ddr"))
ddr <- rev(ddr)
x <- x[, iy]
cellnote <- cellnote[, iy]
}
else iy <- 1:nr
image(1:nc, 1:nr, x, xlim = 0.5 + c(0, nc), ylim = 0.5 + c(0, nr),
axes = FALSE, xlab = "", ylab = "", col = col, breaks = breaks, ...)
retval$carpet <- x
if (exists("ddr"))
retval$rowDendrogram <- ddr
if (exists("ddc"))
retval$colDendrogram <- ddc
retval$breaks <- breaks
retval$col <- col
if (!gtools::invalid(na.color) & any(is.na(x))) {
mmat <- ifelse(is.na(x), 1, NA)
image(1:nc, 1:nr, mmat, axes = FALSE, xlab = "", ylab = "",
col = na.color, add = TRUE)
}
if (is.null(srtCol))
axis(1, 1:nc, labels = labCol, las = 2, line = -0.5 + offsetCol,
tick = 0, cex.axis = cexCol, hadj = adjCol[1], padj = adjCol[2])
else {
if (is.numeric(srtCol)) {
if (missing(adjCol) || is.null(adjCol))
adjCol <- c(1, NA)
xpd.orig <- par("xpd")
par(xpd = NA)
xpos <- axis(1, 1:nc, labels = rep("", nc), las = 2,
tick = 0)
text(x = xpos, y = par("usr")[3] - (1 + offsetCol) * strheight("M"),
labels = labCol, adj = adjCol, cex = cexCol, srt = srtCol)
par(xpd = xpd.orig)
}
else warning("Invalid value for srtCol ignored.")
}
if (is.null(srtRow)) {
axis(4, iy, labels = labRow, las = 2, line = -0.5 + offsetRow,
tick = 0, cex.axis = cexRow, hadj = adjRow[1], padj = adjRow[2])
}
else {
if (is.numeric(srtRow)) {
xpd.orig <- par("xpd")
par(xpd = NA)
ypos <- axis(4, iy, labels = rep("", nr), las = 2,
line = -0.5, tick = 0)
text(x = par("usr")[2] + (1 + offsetRow) * strwidth("M"),
y = ypos, labels = labRow, adj = adjRow, cex = cexRow,
srt = srtRow)
par(xpd = xpd.orig)
}
else warning("Invalid value for srtRow ignored.")
}
if (!is.null(xlab))
mtext(xlab, side = 1, line = margins[1] - 1.25)
if (!is.null(ylab))
mtext(ylab, side = 4, line = margins[2] - 1.25)
if (!missing(add.expr))
eval(substitute(add.expr))
if (!missing(colsep))
for (csep in colsep) rect(xleft = csep + 0.5, ybottom = 0,
xright = csep + 0.5 + sepwidth[1],
ytop = ncol(x) + 1, lty = 1,
lwd = linewidth, col = sepcolor, border = sepcolor)
if (!missing(rowsep))
for (rsep in rowsep) rect(xleft = 0, ybottom = (ncol(x) + 1 - rsep) - 0.5,
xright = nrow(x) + 1,
ytop = (ncol(x) + 1 - rsep) - 0.5 - sepwidth[2],
lty = 1, lwd = linewidth,
col = sepcolor, border = sepcolor)
min.scale <- min(breaks)
max.scale <- max(breaks)
x.scaled <- scale01(t(x), min.scale, max.scale)
if (trace %in% c("both", "column")) {
retval$vline <- vline
vline.vals <- scale01(vline, min.scale, max.scale)
for (i in colInd) {
if (!is.null(vline)) {
abline(v = i - 0.5 + vline.vals, col = linecol,
lty = 2)
}
xv <- rep(i, nrow(x.scaled)) + x.scaled[, i] - 0.5
xv <- c(xv[1], xv)
yv <- 1:length(xv) - 0.5
lines(x = xv, y = yv, lwd = linewidth, col = tracecol, type = "s")
}
}
if (trace %in% c("both", "row")) {
retval$hline <- hline
hline.vals <- scale01(hline, min.scale, max.scale)
for (i in rowInd) {
if (!is.null(hline)) {
abline(h = i - 0.5 + hline.vals, col = linecol,
lty = 2)
}
yv <- rep(i, ncol(x.scaled)) + x.scaled[i, ] - 0.5
yv <- rev(c(yv[1], yv))
xv <- length(yv):1 - 0.5
lines(x = xv, y = yv, lwd = linewidth, col = tracecol, type = "s")
}
}
if (!missing(cellnote))
text(x = c(row(cellnote)), y = c(col(cellnote)), labels = c(cellnote),
col = notecol, cex = notecex)
par(mar = c(margins[1], 0, 0, 0))
if (dendrogram %in% c("both", "row")) {
plot(ddr, horiz = TRUE, axes = FALSE, yaxs = "i", leaflab = "none")
}
else plot.new()
par(mar = c(0, 0, if (!is.null(main)) 5 else 0, margins[2]))
if (dendrogram %in% c("both", "column")) {
plot(ddc, axes = FALSE, xaxs = "i", leaflab = "none")
}
else plot.new()
if (!is.null(main))
title(main, cex.main = 1.5 * op[["cex.main"]])
if (key) {
mar <- c(5, 4, 2, 1)
if (!is.null(key.xlab) && is.na(key.xlab))
mar[1] <- 2
if (!is.null(key.ylab) && is.na(key.ylab))
mar[2] <- 2
if (!is.null(key.title) && is.na(key.title))
mar[3] <- 1
par(mar = mar, cex = 0.75, mgp = c(2, 1, 0))
if (length(key.par) > 0)
do.call(par, key.par)
tmpbreaks <- breaks
if (symkey) {
max.raw <- max(abs(c(x, breaks)), na.rm = TRUE)
min.raw <- -max.raw
tmpbreaks[1] <- -max(abs(x), na.rm = TRUE)
tmpbreaks[length(tmpbreaks)] <- max(abs(x), na.rm = TRUE)
}
else {
min.raw <- min(x, na.rm = TRUE)
max.raw <- max(x, na.rm = TRUE)
}
z <- seq(min.raw, max.raw, length = length(col))
image(z = matrix(z, ncol = 1), col = col, breaks = tmpbreaks,
xaxt = "n", yaxt = "n")
par(usr = c(0, 1, 0, 1))
if (is.null(key.xtickfun)) {
lv <- pretty(breaks)
xv <- scale01(as.numeric(lv), min.raw, max.raw)
xargs <- list(at = xv, labels = lv)
}
else {
xargs <- key.xtickfun()
}
xargs$side <- 1
do.call(axis, xargs)
if (is.null(key.xlab)) {
if (scale == "row")
key.xlab <- "Row Z-Score"
else if (scale == "column")
key.xlab <- "Column Z-Score"
else key.xlab <- "Value"
}
if (!is.na(key.xlab)) {
mtext(side = 1, key.xlab, line = par("mgp")[1], padj = 0.5)
}
if (density.info == "density") {
dens <- density(x, adjust = densadj, na.rm = TRUE)
omit <- dens$x < min(breaks) | dens$x > max(breaks)
dens$x <- dens$x[-omit]
dens$y <- dens$y[-omit]
dens$x <- scale01(dens$x, min.raw, max.raw)
lines(dens$x, dens$y/max(dens$y) * 0.95, col = denscol,
lwd = linewidth)
if (is.null(key.ytickfun)) {
yargs <- list(at = pretty(dens$y)/max(dens$y) *
0.95, labels = pretty(dens$y))
}
else {
yargs <- key.ytickfun()
}
yargs$side <- 2
do.call(axis, yargs)
if (is.null(key.title))
key.title <- "Color Key\nand Density Plot"
if (!is.na(key.title))
title(key.title)
par(cex = 0.5)
if (is.null(key.ylab))
key.ylab <- "Density"
if (!is.na(key.ylab))
mtext(side = 2, key.ylab, line = par("mgp")[1],
padj = 0.5)
}
else if (density.info == "histogram") {
h <- hist(x, plot = FALSE, breaks = breaks)
hx <- scale01(breaks, min.raw, max.raw)
hy <- c(h$counts, h$counts[length(h$counts)])
lines(hx, hy/max(hy) * 0.95, lwd = linewidth, type = "s",
col = denscol)
if (is.null(key.ytickfun)) {
yargs <- list(at = pretty(hy)/max(hy) * 0.95,
labels = pretty(hy))
}
else {
yargs <- key.ytickfun()
}
yargs$side <- 2
do.call(axis, yargs)
if (is.null(key.title))
key.title <- "Color Key\nand Histogram"
if (!is.na(key.title))
title(key.title)
par(cex = 0.5)
if (is.null(key.ylab))
key.ylab <- "Count"
if (!is.na(key.ylab))
mtext(side = 2, key.ylab, line = par("mgp")[1],
padj = 0.5)
}
else title("Color Key")
if (trace %in% c("both", "column")) {
vline.vals <- scale01(vline, min.raw, max.raw)
if (!is.null(vline)) {
abline(v = vline.vals, col = linecol, lty = 2)
}
}
if (trace %in% c("both", "row")) {
hline.vals <- scale01(hline, min.raw, max.raw)
if (!is.null(hline)) {
abline(v = hline.vals, col = linecol, lty = 2)
}
}
}
else plot.new()
retval$colorTable <- data.frame(low = retval$breaks[-length(retval$breaks)],
high = retval$breaks[-1], color = retval$col)
if (!is.null(extrafun))
extrafun()
invisible(retval)
}
## EOF
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.