#' Differential expression analysis using limma.
#'
#' @param expr_data_frame A data frame containing ID and quantification values.
#' @param group A factor for representing experimental groups.
#' @param comparison_factor A vector for comparison groups.
#' @param log2_label A boolean value for representing whether the value is logarithmic or not, the default is FALSE.
#' @param adjust_method Method used to adjust the p-values for multiple testing. See p.adjust for the complete list of options, the default is "BH"
#'
#' @author Dongdong Zhan and Mengsha Tong
#'
#' @references Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression
#' analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.
#'
#' @return A list containing results from limma analysis.
#' @export
#'
#' @examples
#' ## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
#' ## It may take a few minutes.
#' if(FALSE){
#' ftp_url <- "https://github.com/ecnuzdd/PhosMap_datasets/function_demo_data/analysis_deps_limma.RData"
#' load_data <- load_data_with_ftp(ftp_url, 'RData')
#' writeBin(load_data, "analysis_deps_limma.RData")
#' load("analysis_deps_limma.RData")
#'
#' limma_results_df <- analysis_deps_limma(
#' expr_data_frame, group, group_levels,
#' log2_label = FALSE, adjust_method = 'none'
#' )
#' head(limma_results_df)
#'
#' }
analysis_deps_limma <- function(expr_data_frame, group, comparison_factor,
log2_label = FALSE, adjust_method = 'BH'){
requireNamespace('limma')
requireNamespace('stats')
# experiment_design_file_path <- "D:\\Phosphate-data\\Bioinfomatics\\demo_data_from_WYN\\experiment_design_noPair.txt"
# experiment_design_file <- read.table(experiment_design_file_path, sep = '\t', header = T)
# group <- experiment_design_file$Group[experiment_design_file$Data_Type == 'Phospho']
# group <- paste('t', group, sep = '')
# group <- factor(group, levels = c('t0', 't10', 't30', 't120'))
# expr_data_frame <- data_frame_normalization_0
expr_ID <- as.vector(expr_data_frame[,1])
if(!log2_label){
expr_Valule <- log2(expr_data_frame[,-1]) # have to log
}
expr_Valule_row_duplicated <- apply(expr_Valule, 1, function(x){
stats::var(x)
})
expr_Valule_col <- ncol(expr_Valule)
duplicated_row_index <- which(expr_Valule_row_duplicated == 0)
if(length(duplicated_row_index)>0){
# Zero sample variances detected, have been offset away from zero
expr_ID <- expr_ID[-duplicated_row_index]
expr_Valule <- expr_Valule[-duplicated_row_index,]
}
# rownames(expr_Valule) <- expr_ID
design <- stats::model.matrix(~ 0 + group)
cat('\n', 'The matrix of experiment design.')
print(design)
colnames(design) <- levels(factor(group))
rownames(design) <- colnames(expr_Valule)
# comparison_statement <- c('t10-t0', 't30-t0', 't120-t0')
# comparison_statement <- c('t10-t0')
group_levels <- comparison_factor
group_levels_count <- length(group_levels)
if(group_levels_count<2){
cat('\n', 'Do not construct pairwise comparison pattern.')
stop('')
}else{
comparison_statement <- NULL
i_end <- group_levels_count - 1
for(i in seq_len(i_end)){
ctrl <- group_levels[i]
j_start <- i + 1
for(j in j_start:group_levels_count){
treat <- group_levels[j]
cs <- paste(treat, '-', ctrl, sep = '')
comparison_statement <- c(comparison_statement, cs)
}
}
cat('\n', 'The combination of pairwise comparison(s).')
cat('\n', comparison_statement, '\n')
}
contrast.matrix <- limma::makeContrasts(contrasts = comparison_statement, levels = design)
cat('\n', 'The matrix of comparison statement, compare other groups with control.')
print(contrast.matrix) # the matrix of comparison statement, compare other groups with control.
# step1
fit <- limma::lmFit(expr_Valule, design)
# step2
fit2 <- limma::contrasts.fit(fit, contrast.matrix) # An important step.
fit2 <- limma::eBayes(fit2) # default no trend!
# return(fit2)
# step3
alls <- limma::topTable(fit2, coef = 1, adjust.method = adjust_method, p.value = 1, number = Inf) # logFC = log(a/b) = log(a) - log(b) = A - B
# results <- decideTests(fit2, method = "global", adjust.method = adjust_method, p.value = minPvalue, lfc = minFC)
# vennDiagram(results)
alls <- stats::na.omit(alls)
# plot
ID <- rownames(alls)
logFC <- alls$logFC # log2
pvalue <- alls$adj.P.Val
result_df <- data.frame(ID, logFC, pvalue)
return(result_df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.