#' Differential expression analysis using ANOVA
#'
#' @param expr_data_frame A data frame containing ID and quantification values.
#' @param group A factor representing experimental groups.
#' @param log2_label A boolean value for representing whether the value is logarithmic or not, the default is FALSE.
#' @param return_padjust A boolean value for representing whether or not the p value is adjusted, the default is TRUE.
#' @param adjust_method Method used to adjust the p-values for multiple testing. See p.adjust for the complete list of options, the default is "BH".
#'
#' @author Dongdong Zhan and Mengsha Tong
#'
#' @return A data frame containing ID, log2(FC) and p value.
#' @export
#'
#' @examples
#' ## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
#' ## It may take a few minutes.
#' if(FALSE){
#' ftp_url <- "https://github.com/ecnuzdd/PhosMap_datasets/function_demo_data/analysis_deps_anova.RData"
#' load_data <- load_data_with_ftp(ftp_url, 'RData')
#' writeBin(load_data, "analysis_deps_anova.RData")
#' load("analysis_deps_anova.RData")
#'
#' anova_result <- analysis_deps_anova(
#' expr_data_frame, group, log2_label = FALSE,
#' return_padjust = TRUE, adjust_method = 'BH'
#' )
#' head(anova_result)
#'
#' }
analysis_deps_anova <- function(expr_data_frame, group, log2_label = FALSE, return_padjust = TRUE, adjust_method = 'BH'){
requireNamespace('stats')
group_nlevels <- nlevels(group)
if(group_nlevels < 2){
cat('\n', 'Not found pairwise comparison.', '\n')
stop('')
}
expr_ID <- as.vector(expr_data_frame[,1])
if(!log2_label){
expr_Valule <- log2(expr_data_frame[,-1]) # have to log
}
expr_Valule_row_duplicated <- apply(expr_Valule, 1, function(x){
stats::var(x)
})
expr_Valule_col <- ncol(expr_Valule)
duplicated_row_index <- which(expr_Valule_row_duplicated == 0)
if(length(duplicated_row_index)>0){
expr_ID <- expr_ID[-duplicated_row_index]
expr_Valule <- expr_Valule[-duplicated_row_index,]
}
pvalue <- apply(expr_Valule, 1, function(y, x){
y <- as.vector(unlist(y))
fit <- stats::aov(y ~ x)
fit.summary <- summary(fit)
p <- fit.summary[[1]][1,5]
p
}, x = group)
if(return_padjust){
pvalue <- stats::p.adjust(pvalue, method <- adjust_method)
}
logFC <- apply(expr_Valule, 1, function(y, x){
y <- as.vector(unlist(y))
y_x_m <- tapply(y, x, mean)
fc <- max(y_x_m) - min(y_x_m)
fc
}, x = group)
anova_df <- data.frame(expr_ID, logFC, pvalue)
colnames(anova_df) <- c('ID', 'logFC', 'pvalue')
return(anova_df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.