## Implementation of the MAGIC method by van Dijk et al
## for Markov Affinity imputation of single-cell data
# #' Markov Affinity-based Graph Imputation of Cells
# #'
# #' A diffusion-based imputation method for reducing technical noise due to
# #' dropout from inefficient mRNA capture. An R implementation of the MAGIC
# #' method from van Dijk et al (2017).
# #'
# #' @usage
# #' \S4method{magic}{SCESet}(object, exprs_values, power, rescale, logged_data, ...)
# #'
# #' @docType methods
# #' @name magic
# #' @rdname magic
# #' @aliases magic magic,SCESet-method
# #'
# #' @param object an \code{SCESet} object.
# #' @param exprs_values character string indicating which values should be used
# #' as the expression values for this plot. Valid arguments are \code{"tpm"}
# #' (transcripts per million), \code{"norm_tpm"} (normalised TPM
# #' values), \code{"fpkm"} (FPKM values), \code{"norm_fpkm"} (normalised FPKM
# #' values), \code{"counts"} (counts for each feature), \code{"norm_counts"},
# #' \code{"cpm"} (counts-per-million), \code{"norm_cpm"} (normalised
# #' counts-per-million), \code{"exprs"} (whatever is in the \code{'exprs'} slot
# #' of the \code{SCESet} object; default), \code{"norm_exprs"} (normalised
# #' expression values) or \code{"stand_exprs"} (standardised expression values)
# #' or any other slots that have been added to the \code{"assayData"} slot by
# #' the user.
# #' @param power integer(1), the Markov transition matrix will be taken to this
# #' power before multiplying the original expression values to obtain imputed
# #' values.
# #' @param rescale numeric(1), optional (default is NULL for no rescaling)
# #' rescaling parameter. If provided, must be a numeric scale in [0, 1] providing
# #' the quantile of expression values to use as the ratio between original and
# #' imputed expression values by which to scale imputed expression values.
# #' @param logged_data is the input data on a log scale? If so, no rescaling will
# #' be done, and the \code{rescale} argument will be ignored.
# #' @param ... further arguments passed to \code{\link[destiny]{DiffusionMap}}.
# #' Key parameters are \code{k} (number of nearest neighbours to consider),
# #' \code{n_eigs} (number of eigenvectors/values to return), \code{sigma}
# #' (diffusion scale parameter of the Gaussian kernel, either "global" or the
# #' default, "local") and \code{n_local} (if \code{sigma == "local"}, the
# #' \code{n_local}th nearest neighbour determines the local sigma). For details,
# #' see the documentation for \code{\link[destiny]{DiffusionMap}}.
# #'
# #' @return A feature by cell matrix of "magic" imputed expression values.
# #'
# #' @details
# #' This implementation of MAGIC differs slightly from the original Python
# #' implementation published by van Dijk et al (2017). This function uses the
# #' \code{\link[destiny]{DiffusionMap}} method from the \link[destiny]{destiny}
# #' package to compute the cell-cell Markov transition matrix. This differs in
# #' subtle ways from the Python implementation of the method from van Dijk et al,
# #' so results from this function will differ slightly numerically from results
# #' obtained from the MAGIC python package (\url{https://github.com/pkathail/magic}).
# #'
# #' @references
# #' van Dijk D, Nainys J, Sharma R, Kathail P, Carr AJ, Moon KR, et al.
# #' MAGIC: A diffusion-based imputation method reveals gene-gene interactions in
# #' single-cell RNA-sequencing data. bioRxiv. 2017. p. 111591.
# #' doi:10.1101/111591
# #'
# #' @author Davis McCarthy
# #'
# #'
# #' @examples
# #' data("sc_example_counts")
# #' data("sc_example_cell_info")
# #' pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
# #' example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
# #' example_sceset <- example_sceset[rowSums(counts(example_sceset)) > 0.5, ]
# #' mgc <- magic(example_sceset, power = 6, k = 30, n_eigs = 20, n_local = 10)
# #'
.magic_default <- function(exprs_mat, power = 6L,
rescale = NULL, logged_data = TRUE, ...) {
if ( !requireNamespace("destiny", quietly = TRUE) )
stop("This function requires the 'destiny' package.
Try: source('https://bioconductor.org/biocLite.R'); biocLite('destiny').")
if ( !is.null(rescale) && (rescale < 0 || rescale > 1) )
stop("rescale argument defines a quantile and must be in [0, 1].")
## here, exprs_mat is a cells x features matrix
#run diffusion maps to get markov matrix
diffmap <- destiny::DiffusionMap(exprs_mat, ...)
L <- as.matrix(diffmap@transitions)
L_t <- L
for (i in seq_len(as.integer(power) - 1))
L_t <- L_t %*% L
new_exprs <- L_t %*% exprs_mat
colnames(new_exprs) <- colnames(exprs_mat)
rownames(new_exprs) <- rownames(exprs_mat)
## rescale data by gene
if (!is.null(rescale)) {
if (logged_data && any(exprs_mat < 0)) {
warning('Rescaling should not be performed on log-transformed ',
'(or other negative) values. Imputed data return unscaled.')
} else {
if (logged_data)
message('Rescaling should be used with caution on log-transformed data.')
M99 <- apply(exprs_mat, 2, quantile, probs = rescale)
M100 <- apply(exprs_mat, 2, max)
indices <- which(M99 == 0)
M99[indices] <- M100[indices]
M99_new <- apply(new_exprs, 2, quantile, probs = rescale)
M100_new <- apply(new_exprs, 2, max)
indices <- which(M99_new == 0)
M99_new[indices] <- M100_new[indices]
max_ratio <- M99 / M99_new
rescale_mat <- matrix(max_ratio, nrow = nrow(new_exprs),
ncol = ncol(new_exprs), byrow = TRUE)
new_exprs <- new_exprs * rescale_mat
}
}
t(new_exprs)
}
# #' @rdname magic
# #' #@export
setMethod("magic", signature(object = "SCESet"),
function(object, exprs_values = "exprs", power = 6, rescale = NULL,
logged_data = TRUE, ...) {
exprs_mat <- t(get_exprs(object, exprs_values, warning = FALSE))
.magic_default(exprs_mat, power, rescale, logged_data, ...)
})
# data("sc_example_counts")
# data("sc_example_cell_info")
# pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
# example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
# example_sceset <- example_sceset[rowSums(counts(example_sceset)) > 0.5, ]
# # write.csv(t(exprs(example_sceset)), "~/Downloads/sc_example_exprs.csv")
# mgc <- magic(example_sceset, power = 6, k = 30, n_eigs = 20, n_local = 10, rescale = 0.99)
# mgc_norescale <- magic(example_sceset, power = 6, k = 30, n_eigs = 20, n_local = 10)
#
# ## with rescaling
# mgc_py <- readr::read_csv("~/Downloads/sc_example_magic_py.csv")
# mgc_py_mat <- as.matrix(mgc_py[, -1])
# rownames(mgc_py_mat) <- mgc_py[[1]]
# mgc_py_mat <- t(mgc_py_mat)
#
# ## without rescaling
# mgc_py <- readr::read_csv("~/Downloads/sc_example_magic_py_no_rescale.csv")
# mgc_py_norescale_mat <- as.matrix(mgc_py[, -1])
# rownames(mgc_py_norescale_mat) <- mgc_py[[1]]
# mgc_py_norescale_mat <- t(mgc_py_norescale_mat)
#
#
# par(mfcol = c(2, 1))
# plot(mgc_py_mat, mgc, main = "R vs Py implementation; rescaling")
# abline(0, 1, col = "firebrick")
# plot(mgc_py_norescale_mat, mgc_norescale, main = "R vs Py implementation; no rescaling")
# abline(0, 1, col = "firebrick")
#
#
# set_exprs(example_sceset, "mgc") <- mgc
# set_exprs(example_sceset, "mgc_py") <- mgc_py_mat
# set_exprs(example_sceset, "mgc_norescale") <- mgc_norescale
# set_exprs(example_sceset, "mgc_py_norescale") <- mgc_py_norescale_mat
# set_exprs(example_sceset, "mgc_k5") <- magic(example_sceset, power = 6, k = 5, n_eigs = 20, rescale = 0.99)
# set_exprs(example_sceset, "mgc_p3") <- magic(example_sceset, power = 3, k = 5, n_eigs = 20, rescale = 0.99)
# set_exprs(example_sceset, "mgc_p10") <- magic(example_sceset, power = 10, k = 5, n_eigs = 20, rescale = 0.99)
#
# plotTSNE(example_sceset, exprs_values = "mgc", colour_by = "Mutation_Status")
# plotTSNE(example_sceset, exprs_values = "mgc", colour_by = "Cell_Cycle")
# plotTSNE(example_sceset, exprs_values = "mgc_py", colour_by = "Mutation_Status")
# plot(example_sceset, exprs_values = "mgc_py")
#
#
# par(mfcol = c(4, 1))
# boxplot(exprs(example_sceset))
# boxplot(get_exprs(example_sceset, "mgc"))
# boxplot(get_exprs(example_sceset, "mgc_py"))
# boxplot(get_exprs(example_sceset, "mgc_p10"))
# par(mfcol = c(2, 1))
# boxplot(get_exprs(example_sceset, "mgc_norescale"))
# boxplot(get_exprs(example_sceset, "mgc_py_norescale"))
# par(mfcol = c(4, 1))
# boxplot(t(exprs(example_sceset)[1:30,]))
# boxplot(t(get_exprs(example_sceset, "mgc_k5")[1:30,]), main = "R: k=5")
# boxplot(t(get_exprs(example_sceset, "mgc_norescale")[1:30,]), main = "R: k=30")
# boxplot(t(get_exprs(example_sceset, "mgc_py_norescale")[1:30,]), main = "Py: k=30")
#
# par(mfcol = c(4, 1))
# boxplot(t(exprs(example_sceset)[1:30,]))
# boxplot(t(get_exprs(example_sceset, "mgc_p3")[1:30,]), main = "R: power=3")
# boxplot(t(get_exprs(example_sceset, "mgc_k5")[1:30,]), main = "R: power=6")
# boxplot(t(get_exprs(example_sceset, "mgc_p10")[1:30,]), main = "R: power=10")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.