Description Usage Arguments Details Value Examples
Find most important principal components for a given variable
1 2 3 | findImportantPCs(object, variable = "total_features",
plot_type = "pcs-vs-vars", exprs_values = "exprs", ntop = 500,
feature_set = NULL, scale_features = TRUE, theme_size = 10)
|
object |
an SCESet object containing expression values and experimental information. Must have been appropriately prepared. |
variable |
character scalar providing a variable name (column from
|
plot_type |
character string, indicating which type of plot to produce.
Default, |
exprs_values |
which slot of the |
ntop |
numeric scalar indicating the number of most variable features to
use for the PCA. Default is |
feature_set |
character, numeric or logical vector indicating a set of
features to use for the PCA. If character, entries must all be in
|
scale_features |
logical, should the expression values be standardised
so that each feature has unit variance? Default is |
theme_size |
numeric scalar providing base font size for ggplot theme. |
Plot the top 5 or 6 most important PCs (depending on the
plot_type
argument for a given variable. Importance here is defined as
the R-squared value from a linear model regressing each PC onto the variable
of interest.
a ggplot
plot object
1 2 3 4 5 6 7 8 9 | data("sc_example_counts")
data("sc_example_cell_info")
pd <- new("AnnotatedDataFrame", data = sc_example_cell_info)
rownames(pd) <- pd$Cell
example_sceset <- newSCESet(countData = sc_example_counts, phenoData = pd)
drop_genes <- apply(exprs(example_sceset), 1, function(x) {var(x) == 0})
example_sceset <- example_sceset[!drop_genes, ]
example_sceset <- calculateQCMetrics(example_sceset)
findImportantPCs(example_sceset, variable="total_features")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.