R/dittoHex.R

Defines functions .check_color.method .ditto_scatter_hex dittoScatterHex dittoDimHex

Documented in dittoDimHex dittoScatterHex

#' Show RNAseq data, grouped into hexagonal bins, on a scatter or dimensionality reduction plot
#' @name dittoHex
#' 
#' @param x.var,y.var Single string giving a gene or metadata that will be used for the x- and y-axis of the scatterplot.
#' Note: must be continuous.
#'
#' Alternatively, can be a directly supplied numeric vector of length equal to the total number of cells/samples in \code{object}.
#' 
#' @param rename.color.groups String vector containing new names for the identities of discrete color groups.
#' @param split.nrow,split.ncol Integers which set the dimensions of faceting/splitting when a single metadata is given to \code{split.by}.
#' @param xlab,ylab Strings which set the labels for the axes. To remove, set to \code{NULL}.
#' @param bins Numeric or numeric vector giving the number of haxagonal bins in the x and y directions. Set to 30 by default.
#' @param color.method Works differently depending on whether the \code{color.var}-data is continuous versus discrete:
#' 
#' \strong{Continuous}: String naming a function for how target data should be summarized for each bin.
#' Can be any function that summarizes a numeric vector input with a single numeric output value.
#' Default is \code{median}. Other useful options are \code{sum}, \code{mean}, \code{sd}, or \code{mad}.
#' You can also use a previously assigned function; e.g. first run \code{pNonZero <- function(x) \{ sum(x!=0)/length(x)\}},
#' then you give \code{color.method = "pNonZero"}
#' 
#' \strong{Discrete}: A string signifying whether the color should (default) be simply based on the "max" grouping of the bin,
#' based on "prop.<value>" the proportion of a specific value (e.g. "prop.A" or "prop.TRUE"),
#' or based on the "max.prop"ortion of cells/samples belonging to any grouping.
#'
#' @param legend.density.title,legend.color.title Strings which set the title for the legends.
#' @param legend.density.breaks,legend.color.breaks Numeric vector which sets the discrete values to label in the density and color.var legends.
#' @param legend.density.breaks.labels,legend.color.breaks.labels String vector, with same length as \code{legend.*.breaks}, which sets the labels for the tick marks or hex icons of the associated legend.
#' @param min.opacity,max.opacity Scalar between [0,1] which sets the minimum or maximum opacity used for the density legend (when color is used for \code{color.var} data and density is shown via opacity).
#' @param min.density,max.density Number which sets the min/max values used for the density scale.
#' Used no matter whether density is represented through opacity or color.
#' @param min.color,max.color color for the min/max values of the color scale. 
#' @param min,max Number which sets the values associated with the minimum or maximum color for \code{color.var} data.
#' @param main String, sets the plot title. The default title is either "Density", \code{color.var}, or NULL, depending on the identity of \code{color.var}.
#' To remove, set to \code{NULL}.
#' @param data.out Logical. When set to \code{TRUE}, changes the output from the plot alone to a list containing the plot ("plot"),
#' and data.frame of the underlying data for target cells ("data").
#' @param add.trajectory.curves List of matrices, each representing coordinates for a trajectory path, from start to end, where matrix columns represent x (\code{dim.1}) and y (\code{dim.2}) coordinates of the paths.
#'
#' Alternatively, (for dittoDimHex only, but not dittoScatterHex) a list of lists(/princurve objects) can be provided.
#' Thus, if the \code{\link[slingshot]{slingshot}} package was used for trajectory analysis,
#' you can provide \code{add.trajectory.curves = slingCurves('object')}
#' @inheritParams dittoScatterPlot
#' @inheritParams dittoDimPlot
#' 
#' @details
#' The functions create a dataframe with x and y coordinates for each cell/sample, determined by either \code{x.var} and \code{y.var} for \code{dittoScatterHex},
#' or \code{reduction.use}, \code{dim.1} (x), and \code{dim.2} (y) for \code{dittoDimHex}.
#' Extra data requested by \code{color.var} for coloring, \code{split.by} for faceting, or \code{extra.var} for manual external manipulations, are added to the dataframe as well.
#' For expression/counts data, \code{assay}, \code{slot}, and \code{adjustment} inputs can be used to select which values to use, and if they should be adjusted in some way.
#'
#' The dataframe is then subset to only target cells/samples based on the \code{cells.use} input.
#'
#' Finally, a hex plot is created using this dataframe:
#' 
#' If \code{color.var} is not rovided, coloring is based on the density of cells/samples within each hex bin.
#' When \code{color.var} is provided, density is represented through opacity while coloring is based on a summarization, chosen with the \code{color.method} input, of the target \code{color.var} data.
#' 
#' If \code{split.by} was used, the plot will be split into a matrix of panels based on the associated groupings.
#'
#' @return A ggplot object where colored hexagonal bins are used to summarize RNAseq data in a scatterplot or tSNE, PCA, UMAP.
#'
#' Alternatively, if \code{data.out=TRUE}, a list containing two slots is output: the plot (named 'plot'), and a data.table containing the underlying data for target cells (named 'data').
#'
#' @section Many characteristics of the plot can be adjusted using discrete inputs:
#' \itemize{
#' \item Colors: \code{min.color} and \code{max.color} adjust the colors for continuous data.
#' \item For discrete \code{color.var} plotting with \code{color.method = "max"}, colors are instead adjusted with \code{color.panel} and/or \code{colors} & the labels of the groupings can be changed using \code{rename.color.groups}.
#' \item Titles and axes labels can be adjusted with \code{main}, \code{sub}, \code{xlab}, \code{ylab}, and \code{legend.color.title} and \code{legend.density.title} arguments.
#' \item Legends can also be adjusted in other ways, using variables that all start with "\code{legend.}" for easy tab completion lookup.
#' }
#' 
#' @section Additional Features:
#' Other tweaks and features can be added as well.
#' Each is accessible through 'tab' autocompletion starting with "\code{do.}"\code{---} or "\code{add.}"\code{---},
#' and if additional inputs are involved in implementing or tweaking these, the associated inputs will start with the "\code{---.}":
#' \itemize{
#' \item If \code{do.contour} is provided, density gradiant contour lines will be overlaid with color and linetype adjustable via \code{contour.color} and \code{contour.linetype}.
#' \item If \code{add.trajectory.lineages} is provided a list of vectors (each vector being cluster names from start-cluster-name to end-cluster-name), and a metadata name pointing to the relevant clustering information is provided to \code{trajectory.cluster.meta},
#' then median centers of the clusters will be calculated and arrows will be overlayed to show trajectory inference paths in the current dimmenionality reduction space.
#' \item If \code{add.trajectory.curves} is provided a list of matrices (each matrix containing x, y coordinates from start to end), paths and arrows will be overlayed to show trajectory inference curves in the current dimmenionality reduction space.
#' Arrow size is controlled with the \code{trajectory.arrow.size} input.
#' }
#'
#' @seealso
#' \code{\link{dittoDimPlot}} and \code{\link{dittoScatterPlot}} for making very similar data representations, but where each cell is represented individually.
#' It is often best to investigate your data with both the individual and hex-bin methods, then pick whichever is the best representation for your particular goal.
#' 
#' \code{\link{getGenes}} and \code{\link{getMetas}} to see what the \code{var}, \code{split.by}, etc. options are of an \code{object}.
#'
#' \code{\link{getReductions}} to see what the \code{reduction.use} options are of an \code{object}.
#' 
#' @author Daniel Bunis with some code adapted from Giuseppe D'Agostino
#' @examples
#' example(importDittoBulk, echo = FALSE)
#' myRNA
#' 
#' # Mock up some nCount_RNA and nFeature_RNA metadata
#' #  == the default way to extract
#' myRNA$nCount_RNA <- runif(60,200,1000)
#' myRNA$nFeature_RNA <- myRNA$nCount_RNA*runif(60,0.95,1.05)
#' # and also percent.mito metadata
#' myRNA$percent.mito <- sample(c(runif(50,0,0.05),runif(10,0.05,0.2)))
#'
#' dittoScatterHex(
#'     myRNA, x.var = "nCount_RNA", y.var = "nFeature_RNA")
#' dittoDimHex(myRNA)
#' 
#' # We don't have too many samples here, so let's increase the bin size.
#' dittoDimHex(myRNA, bins = 10)
#' 
#' # x and y bins can be set separately, useful for non-square plots
#' dittoDimHex(myRNA, bins = c(20, 10))
#' 
#' ### Coloring
#' # Default coloring, as above, is by cell/sample density in the region, but
#' # 'color.var' can be used to color the data by another metric.
#' # Density with then be represented via bin opacity.
#' dittoDimHex(myRNA, color.var = "clustering", bins = 10)
#' dittoDimHex(myRNA, color.var = "gene1", bins = 10)
#' 
#' # 'color.method' is then used to adjust how the target data is summarized
#' dittoDimHex(myRNA, color.var = "groups", bins = 10,
#'     color.method = "max.prop")
#' dittoDimHex(myRNA, color.var = "gene1", bins = 10,
#'     color.method = "mean")
#' # One particularly useful 'color.method' for discrete 'color.var'-data is
#' #   to use 'prop.<value>' to color by the proportion of a particular value
#' #   within each bin:
#' dittoDimHex(myRNA, color.var = "groups", bins = 10,
#'     color.method = "prop.A")
#' 
#' ### Additional Features:
#' 
#' # Faceting with 'split.by'
#' dittoDimHex(myRNA, bins = 10, split.by = "groups")
#' dittoDimHex(myRNA, bins = 10, split.by = c("groups", "clustering"))
#' 
#' # Faceting can also be used to show multiple continuous variables side-by-side
#' #   by giving a vector of continuous metadata or gene names to 'color.var'.
#' #   This can also be combined with 1 'split.by' variable, with direction then
#' #   controlled via 'multivar.split.dir':
#' dittoDimHex(myRNA, bins = 10,
#'     color.var = c("gene1", "gene2"))
#' dittoDimHex(myRNA, bins = 10,
#'     color.var = c("gene1", "gene2"),
#'     split.by = "groups")
#' dittoDimHex(myRNA, bins = 10,
#'     color.var = c("gene1", "gene2"),
#'     split.by = "groups",
#'     multivar.split.dir = "row")
#' 
#' # Underlying data output with 'data.out = TRUE'
#' dittoDimHex(myRNA, data.out = TRUE)
#' 
#' # Contour lines can be added with 'do.contours = TRUE'
#' dittoDimHex(myRNA, bins = 10,
#'     do.contour = TRUE,
#'     contour.color = "lightblue", # Optional, black by default
#'     contour.linetype = "dashed") # Optional, solid by default
#' 
#' # Trajectories can be added to dittoDimHex plots
#' dittoDimHex(myRNA, bins = 10,
#'     add.trajectory.lineages = list(c(1,2,4), c(1,4), c(1,3)),
#'     trajectory.cluster.meta = "clustering")
NULL

#' @describeIn dittoHex Show RNAseq data overlayed on a tsne, pca, or similar, grouped into hexagonal bins
#' @export
dittoDimHex <- function(
    object,
    color.var = NULL,
    bins = 30,
    color.method = NULL,
    reduction.use = .default_reduction(object),
    dim.1 = 1,
    dim.2 = 2,
    cells.use = NULL,
    color.panel = dittoColors(),
    colors = seq_along(color.panel),
    split.by = NULL,
    extra.vars = NULL,
    multivar.split.dir = c("col", "row"),
    split.nrow = NULL,
    split.ncol = NULL,
    split.adjust = list(),
    assay = .default_assay(object),
    slot = .default_slot(object),
    adjustment = NULL,
    swap.rownames = NULL,
    assay.extra = assay,
    slot.extra = slot,
    adjustment.extra = adjustment,
    show.axes.numbers = TRUE,
    show.grid.lines = !grepl("umap|tsne", tolower(reduction.use)),
    main = "make",
    sub = NULL,
    xlab = "make",
    ylab = "make",
    theme = theme_bw(),
    do.contour = FALSE,
    contour.color = "black",
    contour.linetype = 1,
    min.density = NA,
    max.density = NA,
    min.color = "#F0E442",
    max.color = "#0072B2",
    min.opacity = 0.2,
    max.opacity = 1, 
    min = NA,
    max = NA,
    rename.color.groups = NULL,
    do.ellipse = FALSE,
    do.label = FALSE,
    labels.size = 5,
    labels.highlight = TRUE,
    labels.repel = TRUE,
    labels.split.by = split.by,
    labels.repel.adjust = list(),
    add.trajectory.lineages = NULL,
    add.trajectory.curves = NULL,
    trajectory.cluster.meta,
    trajectory.arrow.size = 0.15,
    data.out = FALSE,
    legend.show = TRUE,
    legend.color.title = "make",
    legend.color.breaks = waiver(),
    legend.color.breaks.labels = waiver(),
    legend.density.title = if (isBulk(object)) "Samples" else "Cells",
    legend.density.breaks = waiver(),
    legend.density.breaks.labels = waiver()
    ) {
    
    multivar.split.dir <- match.arg(multivar.split.dir)

    # Generate the x/y dimensional reduction data and plot titles.
    xdat <- .extract_Reduced_Dim(reduction.use, dim.1, object)
    ydat <- .extract_Reduced_Dim(reduction.use, dim.2, object)
    xlab <- .leave_default_or_null(xlab, xdat$name)
    ylab <- .leave_default_or_null(ylab, ydat$name)

    # Edit theme
    if (!show.grid.lines) {
        theme <- theme + theme(
            panel.grid.major = element_blank(),
            panel.grid.minor = element_blank())
    }
    if (!show.axes.numbers) {
        theme <- theme +
            theme(axis.text.x=element_blank(), axis.text.y=element_blank())
    }

    # Make dataframes and plot
    p.df <- dittoScatterHex(
        object, xdat$embeddings, ydat$embeddings, color.var, bins,
        color.method, split.by,
        extra.vars, cells.use, color.panel, colors, multivar.split.dir,
        split.nrow, split.ncol, split.adjust, NA, NA, NA, NA, NA, NA,
        assay, slot, adjustment, assay.extra, slot.extra, adjustment.extra,
        swap.rownames,
        min.density, max.density, min.color, max.color,
        min.opacity, max.opacity, min, max,
        rename.color.groups, xlab, ylab, main, sub, theme,
        do.contour, contour.color, contour.linetype,
        do.ellipse, do.label, labels.size, labels.highlight, labels.repel,
        labels.split.by, labels.repel.adjust,
        add.trajectory.lineages, add.trajectory.curves = NULL,
        trajectory.cluster.meta, trajectory.arrow.size,
        legend.show,
        legend.color.title, legend.color.breaks, legend.color.breaks.labels,
        legend.density.title, legend.density.breaks, legend.density.breaks.labels,
        data.out = TRUE)
    p <- p.df$plot
    data <- p.df$data
    
    # Add extra features
    if (is.list(add.trajectory.curves)) {
        p <- .add_trajectory_curves(
            p, add.trajectory.curves, trajectory.arrow.size, dim.1, dim.2)
    }
    
    ### RETURN the PLOT ###
    if (data.out) {
        list(
            plot = p,
            data = data)
    } else {
        p
    }
}

#' @describeIn dittoHex Make a scatter plot of RNAseq data, grouped into hexagonal bins
#' @export
dittoScatterHex <- function(
    object,
    x.var,
    y.var,
    color.var = NULL,
    bins = 30,
    color.method = NULL,
    split.by = NULL,
    extra.vars = NULL,
    cells.use = NULL,
    color.panel = dittoColors(),
    colors = seq_along(color.panel),
    multivar.split.dir = c("col", "row"),
    split.nrow = NULL,
    split.ncol = NULL,
    split.adjust = list(),
    assay.x = .default_assay(object),
    slot.x = .default_slot(object),
    adjustment.x = NULL,
    assay.y = .default_assay(object),
    slot.y = .default_slot(object),
    adjustment.y = NULL,
    assay.color = .default_assay(object),
    slot.color = .default_slot(object),
    adjustment.color = NULL,
    assay.extra = .default_assay(object),
    slot.extra = .default_slot(object),
    adjustment.extra = NULL,
    swap.rownames = NULL,
    min.density = NA,
    max.density = NA,
    min.color = "#F0E442",
    max.color = "#0072B2",
    min.opacity = 0.2,
    max.opacity = 1,
    min = NA,
    max = NA,
    rename.color.groups = NULL,
    xlab = x.var,
    ylab = y.var,
    main = "make",
    sub = NULL,
    theme = theme_bw(),
    do.contour = FALSE,
    contour.color = "black",
    contour.linetype = 1,
    do.ellipse = FALSE,
    do.label = FALSE,
    labels.size = 5,
    labels.highlight = TRUE,
    labels.repel = TRUE,
    labels.split.by = split.by,
    labels.repel.adjust = list(),
    add.trajectory.lineages = NULL,
    add.trajectory.curves = NULL,
    trajectory.cluster.meta,
    trajectory.arrow.size = 0.15,
    legend.show = TRUE,
    legend.color.title = "make",
    legend.color.breaks = waiver(),
    legend.color.breaks.labels = waiver(),
    legend.density.title = if (isBulk(object)) "Samples" else "Cells",
    legend.density.breaks = waiver(),
    legend.density.breaks.labels = waiver(),
    data.out = FALSE) {

    # Standardize cells/samples vectors.
    cells.use <- .which_cells(cells.use, object)
    multivar.split.dir <- match.arg(multivar.split.dir)

    # Make dataframe
    all_data <- .scatter_data_gather(
        object, cells.use, x.var, y.var, color.var, shape.by=NULL, split.by,
        extra.vars, multivar.split.dir, assay.x, slot.x, adjustment.x, assay.y, slot.y,
        adjustment.y, assay.color, slot.color, adjustment.color, assay.extra,
        slot.extra, adjustment.extra, swap.rownames = swap.rownames,
        rename.color.groups = rename.color.groups)
    data <- all_data$Target_data
    split.by <- all_data$split.by

    # Parse coloring methods
    color_by_var <- FALSE
    discrete_disp <- FALSE
    discrete_data <- FALSE
    
    if (!is.null(color.var)) {
        color_by_var <- TRUE
        
        if (!is.numeric(data$color)) {
            discrete_data <- TRUE
            
            if (!any(c("max.prop", paste0("prop.", unique(data$color))) %in% color.method)) {
                discrete_disp <- TRUE
            }
        }
        
        if (is.null(color.method)) {
            color.method <- ifelse(discrete_data, "max", "median")
        }
        
        .check_color.method(color.method, discrete_disp)
    }
    
    # Set titles if "make"
    main <- .leave_default_or_null(main,
        default = 
            if (!color_by_var) {
                "Density"
            } else if (length(color.var)==1) {
                color.var
            } else {
                NULL
            }
        )
    legend.color.title <- .leave_default_or_null(legend.color.title,
        default = ifelse(
            length(color.var)==1,
            paste(color.var, color.method, sep = ",\n"),
            color.method),
        null.if = is.null(color.var)
    )

    # Make the plot
    p <- .ditto_scatter_hex(
        data, bins, color_by_var, discrete_disp, color.method, color.panel, colors,
        min.density, max.density, min.color, max.color,
        min.opacity, max.opacity, min, max,
        xlab, ylab, main, sub, theme, legend.show,
        legend.color.title, legend.color.breaks, legend.color.breaks.labels,
        legend.density.title, legend.density.breaks, legend.density.breaks.labels)
    
    ### Add extra features
    if (!is.null(split.by)) {
        p <- .add_splitting(
            p, split.by, split.nrow, split.ncol, split.adjust)
    }
    
    if (do.contour) {
        p <- .add_contours(p, data, contour.color,  contour.linetype)
    }
    
    p <- .add_letters_ellipses_labels_if_discrete(
        p, data, is.discrete = discrete_data,
        FALSE, do.ellipse, do.label,
        labels.highlight, labels.size, labels.repel, labels.split.by,
        labels.repel.adjust)
    
    if (is.list(add.trajectory.lineages)) {
        p <- .add_trajectory_lineages(
            p, rbind(all_data$Target_data, all_data$Others_data),
            add.trajectory.lineages, trajectory.cluster.meta,
            trajectory.arrow.size, object)
    }
    
    if (is.list(add.trajectory.curves)) {
        p <- .add_trajectory_curves(
            p, add.trajectory.curves, trajectory.arrow.size)
    }

    ### RETURN the PLOT ###
    if (data.out) {
        return(list(plot = p, data = data))
    } else{
        return(p)
    }
}

.ditto_scatter_hex <- function(
    data,
    bins,
    color_by_var,
    discrete,
    color.method,
    color.panel,
    colors,
    min.density,
    max.density,
    min.color,
    max.color,
    min.opacity,
    max.opacity,
    min,
    max,
    xlab,
    ylab,
    main,
    sub,
    theme,
    legend.show,
    legend.color.title,
    legend.color.breaks,
    legend.color.breaks.labels,
    legend.density.title,
    legend.density.breaks,
    legend.density.breaks.labels
) {

    ### Set up plotting
    p <- ggplot() + ylab(ylab) + xlab(xlab) + ggtitle(main,sub) + theme

    ### Determine how to add data while adding proper theming
    aes.use <- aes(x = .data$X, y = .data$Y)
    geom.args <- list(
        data = data, bins = bins, na.rm = TRUE)
    
    if (!color_by_var) {
        ## Set color scale based on density for stat_bin_hex
        p <- p + scale_fill_gradient(
            name = legend.density.title,
            low= min.color,
            high = max.color,
            limits = c(min.density, max.density),
            breaks = legend.density.breaks,
            labels = legend.density.breaks.labels)
        
    } else {
        ## Setup for ggplot.multistats::stat_summaries_hex
        .error_if_no_ggplot.multistats()
        
        # Set alpha scale based on density
        p <- p + scale_alpha_continuous(
            name = legend.density.title,
            range = c(min.opacity, max.opacity),
            limits = c(min.density, max.density),
            breaks = legend.density.breaks,
            labels = legend.density.breaks.labels)
        
        # Prep aesthetics
        aes.use <- modifyList(aes.use, aes(
            z = .data$color,
            fill = after_stat(.data$fxn_c),
            alpha = after_stat(.data$fxn_d),
            # Fix for when color is a factor
            group = 1))
        
        # Determine how 'c' and 'd' should be calculated &
        # set fill based on color.method
        if (discrete) {
            
            geom.args$funs <- c(
                fxn_c = if (color.method == "max") {
                    function(x) names(which.max(table(x)))
                }, fxn_d = length)
            
            p <- p + scale_fill_manual(
                    name = legend.color.title,
                    values = color.panel[colors])
        
        } else {
            
            geom.args$funs <- c(
                fxn_c = if (color.method == "max.prop") {
                    function(x) max(table(x)/length(x))
                } else if (grepl("^prop.", color.method)) {
                    function(x) {
                        lev <- substr(color.method, 6, nchar(color.method))
                        sum(x==lev)/length(x)
                    }
                } else {
                    color.method
                }, fxn_d = length)
            
            p <- p + scale_fill_gradient(
                name = legend.color.title,
                low= min.color,
                high = max.color,
                limits = c(min,max),
                breaks = legend.color.breaks,
                labels = legend.color.breaks.labels)
            
        }
    }
    
    ### Add data
    geom.args$mapping <- aes.use
    if (!is.null(data$color)) {
        p <- p + do.call(ggplot.multistats::stat_summaries_hex, geom.args)
    } else {
        p <- p + do.call(stat_bin_hex, geom.args)
    }

    if (!legend.show) {
        p <- .remove_legend(p)
    }

    p
}

.check_color.method <- function(color.method, discrete) {
    
    valid <- FALSE
    if (discrete) {
        valid <- color.method == "max"
    } else {
        valid <- color.method == "max.prop" || grepl("^prop.", color.method) || exists(color.method, mode='function')
    }
    
    if (!valid) {
        stop("'color.method' not valid. Must be \"max\", \"max.prop\", or \"prop.<data-level>\" (discrete data) or the name of a function (continuous data)")
    }
}
dtm2451/dittoSeq documentation built on May 5, 2024, 11:19 a.m.