R/inference_lmm_locfdr.R

Defines functions nge.fdrs .gather.locfdr .localfdr

# perturbatr: analysis of high-throughput gene perturbation screens
#
# Copyright (C) 2018 Simon Dirmeier
#
# This file is part of perturbatr
#
# perturbatr is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# perturbatr is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with perturbatr If not, see <http://www.gnu.org/licenses/>.


#' @noRd
#' @importFrom tidyr spread
#' @importFrom tibble as_tibble
#' @importFrom dplyr select
#' @importFrom rlang .data
nge.fdrs <- function(obj)
{
  nges <- tidyr::spread(obj, .data$Condition, .data$GeneConditionEffect)
  fdrs <- list()
  # calculate FDRs for every nested-gene effect
  for (i in unique(obj$Condition))
  {
    nges[[ paste0("Qval.", i) ]] <- NA_real_
    nges.loc  <- dplyr::select(nges, "GeneSymbol", i)
    tryCatch({
        fdrs[[i]] <- .localfdr(nges.loc[[i]])
        nges[[ paste0("Qval.", i) ]] <- fdrs[[i]]$fdr
      }, error = function(e) {
        nges[[ paste0("Qval.", i) ]] <- rep(NA_real_, length(nges.loc[[i]]))
        warnings(paste(
          "Estimation for local FDRs failed, returning NA for all values."))
      }
    )
  }

  .gather.locfdr(nges, fdrs)
}


#' @importFrom rlang .data
.gather.locfdr <- function(nges, fdrs)
{
  # parse the result matrix into a gene matrix
  gene.effect.mat <- nges[, grep("Qval", colnames(nges), invert=TRUE)]
  gene.effect.mat <- tidyr::gather(
    gene.effect.mat, "Condition", "Effect", 2:ncol(gene.effect.mat))

  # parse the result matrix into a fdr matrix
  fdr.mat <- nges[,c(1, grep("Qval", colnames(nges)))]
  fdr.mat <- tidyr::gather(fdr.mat, "Condition", "Qval", 2:ncol(fdr.mat))
  fdr.mat <- dplyr::mutate(fdr.mat,
                           "Condition" = sub("Qval.", "", .data$Condition))

  # join both matrices
  nested.gene.matrix <-
    dplyr::full_join(gene.effect.mat,
                     fdr.mat, by=c("GeneSymbol", "Condition"))

  list(nges=nges,
       fdrs=fdrs,
       nested.gene.matrix=nested.gene.matrix)
}


#' This is the implementation of Efron's local fdr with some additions
#' regarding the return values. It is licensed under GPL-2.
#'
#' @noRd
#' @importFrom splines ns
#' @importFrom utils head
#' @importFrom stats cor median
#' @importFrom graphics hist
#' @importFrom stats glm quantile poly lm approx poisson qnorm
.localfdr <- function(zz, bre = 120, df = 7, pct = 0, pct0 = 1/4, nulltype = 1,
                      type = 0, mult, mlests, main = " ", sw = 0)
{
  ret <- rep(NA_real_, length(zz))
  not_nan_idx <- which(!is.na(zz))
  zz <- zz[not_nan_idx]

  lo <- min(zz)
  up <- max(zz)

  zzz    <- pmax(pmin(zz, up), lo)
  breaks <- seq(lo, up, length = bre)
  zh     <- hist(zzz, breaks = breaks, plot = FALSE)
  x      <- (breaks[-1] + breaks[-length(breaks)])/2
  yall <- y <- zh$counts
  K <- length(y)
  N <- length(zz)

  X <- cbind(1, splines::ns(x, df = df))
  f <- stats::glm(y ~ splines::ns(x, df = df), stats::poisson)$fit

  l <- log(f)
  Fl <- cumsum(f)
  Fr <- cumsum(rev(f))
  D <- (y - f)/(f + 1)^0.5
  D <- sum(D[2:(K - 1)]^2)/(K - 2 - df)

  if (D > 1.5)
    warning(paste("f(z) misfit = ", round(D, 1), ".  Rerun with increased df",
                  sep = ""))

  fp0 = matrix(NA, 6, 3)
  colnames(fp0) = c("delta", "sigma", "p0")

  rownames(fp0) = c("thest", "theSD", "mlest", "mleSD", "cmest",  "cmeSD")
  fp0["thest", seq(2)] = c(0, 1)
  fp0["theSD", seq(2)] = 0
  imax <- seq(l)[l == max(l)][1]
  xmax <- x[imax]

  pctup <- 1 - pct0
  pctlo <- pct0

  lo0 <- stats::quantile(zz, pctlo)
  hi0 <- stats::quantile(zz, pctup)
  nx  <- length(x)
  i0  <- (seq(nx))[x > lo0 & x < hi0]
  x0  <- x[i0]
  y0  <- l[i0]
  X00 <- cbind(x0 - xmax, (x0 - xmax)^2)
  lr <- stats::lm(y0 ~ X00)
  co <- lr$coef

  cmerror = is.na(co[3])
  if (!cmerror)
    cmerror = I(co[3] >= 0)

  if (cmerror) {
    X0 <- cbind(1, x - xmax, (x - xmax)^2)
    warning("CM estimation failed, middle of histogram non-normal")
  }
  else {
    X0 <- cbind(1, x - xmax, (x - xmax)^2)
    xmaxx <- -co[2]/(2 * co[3]) + xmax
    sighat <- 1/sqrt(-2 * co[3])
    fp0["cmest", seq(2)] <- c(xmaxx, sighat)

    l0 <- as.vector(X0 %*% co)
    f0 <- exp(l0)
    p0 <- sum(f0)/sum(f)
    f0 <- f0/p0
    fp0["cmest", 3] <- p0
  }
  b = 4.3 * exp(-0.26 * log(N, 10))

  if (missing(mlests))
  {
    med = median(zz)
    sc = diff(quantile(zz)[c(2, 4)])/(2 * stats::qnorm(0.75))
    mlests = locmle(zz, xlim = c(med, b * sc))
    if (N > 5e+05)
    {
      warning("length(zz) > 500,000. Rerun with mlests = c(",
              mlests[1], ", ", b * mlests[2], ").\n", sep = "")
      mlests = locmle(zz, xlim = c(med, sc))
    }
  }
  if (!is.na(mlests[1]))
  {
    if (N > 5e+05)
      b = 1
    if (nulltype == 1)
    {
      Cov.in = list(x = x, X = X, f = f, sw = sw)
      ml.out = locmle(zz, xlim = c(mlests[1], b * mlests[2]),
                      d = mlests[1], s = mlests[2], Cov.in = Cov.in)
      mlests = ml.out$mle
    }
    else mlests = locmle(zz, xlim = c(mlests[1], b * mlests[2]),
                         d = mlests[1], s = mlests[2])
    fp0["mlest", seq(3)] = mlests[seq(3)]
    fp0["mleSD", seq(3)] = mlests[seq(from=4, to=6)]
  }
  if (sum(is.na(fp0[c(3, 5), seq(2)])) == 0 & nulltype > 1)
    if (abs(fp0["cmest", 1] - mlests[1]) > 0.05 |
        abs(log(fp0["cmest", 2]/mlests[2])) > 0.05)
      warning("Consider rerunning with nulltype = 1")
  if (is.na(mlests[1]))
  {
    if (nulltype == 1)
    {
      if (is.na(fp0["cmest", 1]))
        stop("CM and ML Estimation failed, middle of histogram non-normal")
      else stop("ML estimation failed.  Rerun with nulltype=2")
    }
    else warning("ML Estimation failed")
  }
  if (nulltype < 2)
  {
    delhat = xmax = xmaxx = mlests[1]
    sighat = mlests[2]
    p0 = mlests[3]
    f0 = stats::dnorm(x, delhat, sighat)
    f0 = (sum(f) * f0)/sum(f0)
  }
  fdr    <- pmin((p0 * f0)/f, 1)
  f00    <- exp(-x^2/2)
  f00    <- (f00 * sum(f))/sum(f00)
  p0theo <- sum(f[i0])/sum(f00[i0])
  fp0["thest", 3] <- p0theo
  fdr0 <- pmin((p0theo * f00)/f, 1)
  f0p <- p0 * f0
  if (nulltype == 0)
    f0p <- p0theo * f00
  F0l <- cumsum(f0p)
  F0r <- cumsum(rev(f0p))
  Fdrl <- F0l/Fl
  Fdrr <- rev(F0r/Fr)
  Int <- (1 - fdr) * f * (fdr < 0.9)
  if (sum(x <= xmax & fdr == 1) > 0)
    xxlo <- min(x[x <= xmax & fdr == 1])
  else xxlo = xmax
  if (sum(x >= xmax & fdr == 1) > 0)
    xxhi <- max(x[x >= xmax & fdr == 1])
  else xxhi = xmax
  if (sum(x >= xxlo & x <= xxhi) > 0)
    fdr[x >= xxlo & x <= xxhi] <- 1
  if (sum(x <= xmax & fdr0 == 1) > 0)
    xxlo <- min(x[x <= xmax & fdr0 == 1])
  else xxlo = xmax
  if (sum(x >= xmax & fdr0 == 1) > 0)
    xxhi <- max(x[x >= xmax & fdr0 == 1])
  else xxhi = xmax
  if (sum(x >= xxlo & x <= xxhi) > 0)
    fdr0[x >= xxlo & x <= xxhi] <- 1
  if (nulltype == 1) {
    fdr[x >= mlests[1] - mlests[2] & x <= mlests[1] + mlests[2]] = 1
    fdr0[x >= mlests[1] - mlests[2] & x <= mlests[1] + mlests[2]] = 1
  }
  p1 <- sum((1 - fdr) * f)/N
  p1theo <- sum((1 - fdr0) * f)/N
  fall <- f + (yall - y)
  Efdr <- sum((1 - fdr) * fdr * fall)/sum((1 - fdr) * fall)
  Efdrtheo <- sum((1 - fdr0) * fdr0 * fall)/sum((1 - fdr0) *
                                                  fall)
  iup <- (seq(K))[x >= xmax]
  ido <- (seq(K))[x <= xmax]
  Eleft <- sum((1 - fdr[ido]) * fdr[ido] * fall[ido]) /
            sum((1 - fdr[ido]) * fall[ido])
  Eleft0 <- sum((1 - fdr0[ido]) * fdr0[ido] * fall[ido]) /
            sum((1 - fdr0[ido]) * fall[ido])
  Eright <- sum((1 - fdr[iup]) * fdr[iup] * fall[iup]) /
            sum((1 - fdr[iup]) * fall[iup])
  Eright0 <- sum((1 - fdr0[iup]) * fdr0[iup] * fall[iup]) /
            sum((1 - fdr0[iup]) * fall[iup])
  Efdr <- c(Efdr, Eleft, Eright, Efdrtheo, Eleft0, Eright0)
  Efdr[which(is.na(Efdr))] = 1
  names(Efdr) <- c("Efdr", "Eleft", "Eright", "Efdrtheo", "Eleft0",
                   "Eright0")

  f1 <- (1 - fdr) * fall
  if (!missing(mult)) {
    mul = c(1, mult)
    EE = rep(0, length(mul))
    for (m in seq(EE)) {
      xe = sqrt(mul[m]) * x
      f1e = approx(xe, f1, x, rule = 2, ties = mean)$y
      f1e = (f1e * sum(f1))/sum(f1e)
      f0e = f0
      p0e = p0
      if (nulltype == 0) {
        f0e = f00
        p0e = p0theo
      }
      fdre = (p0e * f0e)/(p0e * f0e + f1e)
      EE[m] = sum(f1e * fdre)/sum(f1e)
    }
    EE = EE/EE[1]
    names(EE) = mul
  }
  Cov2.out = loccov2(X, X0, i0, f, fp0["cmest", ], N)
  Cov0.out = loccov2(X, matrix(1, length(x), 1), i0, f, fp0["thest",
                                                            ], N)
  if (sw == 3) {
    if (nulltype == 0)
      Ilfdr = Cov0.out$Ilfdr
    else if (nulltype == 1)
      Ilfdr = ml.out$Ilfdr
    else if (nulltype == 2)
      Ilfdr = Cov2.out$Ilfdr
    else stop("With sw=3, nulltype must equal 0, 1, or 2.")
    return(Ilfdr)
  }
  Cov = ml.out$Cov.lfdr
  lfdrse <- diag(Cov)^0.5
  fp0["cmeSD", seq(3)] = Cov2.out$stdev[c(2, 3, 1)]
  if (nulltype == 3)
    fp0["cmeSD", 4] = fp0["cmeSD", 2]
  fp0["theSD", 3] = Cov0.out$stdev[1]
  if (sw == 2) {
    pds = fp0["mlest", c(3, 1, 2)]
    stdev = fp0["mleSD", c(3, 1, 2)]
    pds. = t(ml.out$pds.)
    colnames(pds.) = names(pds) = c("p0", "delhat", "sighat")
    names(stdev) = c("sdp0", "sddelhat", "sdsighat")
    return(list(pds = pds, x = x, f = f, pds. = pds., stdev = stdev))
  }

  p1 <- seq(0.01, 0.99, 0.01)
  cdf1 <- rep(0, 99)
  fd <- fdr
  if (nulltype == 0)
    fd <- fdr0
  for (i in seq(99)) cdf1[i] <- sum(f1[fd <= p1[i]])

  cdf1 <- cbind(p1, cdf1/cdf1[99])
  mat <- cbind(x, fdr, Fdrl, Fdrr, f, f0, f00, fdr0, yall,
               lfdrse, f1)
  namat <- c("x", "fdr", "Fdrleft", "Fdrright", "f", "f0",
             "f0theo", "fdrtheo", "counts", "lfdrse", "p1f1")

  if (nulltype == 0)
    namat[c(3, 4, 10)] <- c("Fdrltheo", "Fdrrtheo", "lfdrsetheo")
  dimnames(mat) <- list(NULL, namat)
  z.2 = rep(NA, 2)
  m = order(fd)[nx]

  if (fd[nx] < 0.2) {
    z.2[2] = stats::approx(fd[m:nx], x[m:nx], 0.2, ties = mean)$y
  }
  if (fd[1] < 0.2) {
    z.2[1] = stats::approx(fd[seq(m)], x[seq(m)], 0.2, ties = mean)$y
  }

  hist.dat <- list()
  hist.dat$zvalues <- zzz
  hist.dat$yt <- pmax(yall * (1 - fd), 0)
  hist.dat$x <- x
  hist.dat$f <- f
  hist.dat$f0 <- p0 * f0

  if (!is.na(z.2[2])) hist.dat$z.2.2 <- z.2[2]
  if (!is.na(z.2[1])) hist.dat$z.2.1 <- z.2[1]
  if (nulltype == 0) {
    ffdr <- stats::approx(x, fdr0, zz, rule = 2, ties = "ordered")$y
  }

  else ffdr <- stats::approx(x, fdr, zz, rule = 2, ties = "ordered")$y

  ret[not_nan_idx] <- ffdr
  vl = list(fdr = ret, fp0 = fp0, Efdr = Efdr, cdf1 = cdf1,
            mat = mat, z.2 = z.2)
  if (!missing(mult))
    vl$mult = EE
  vl$call = call
  vl$hist.dat <- hist.dat

  invisible(vl)
}


#' This is the implementation of Efron's local fdr with some additions
#' regarding the return values. It is licensed under GPL2.
#'
#' @noRd
#' @importFrom stats dnorm pnorm
locmle <- function (z, xlim, Jmle = 35, d = 0, s = 1, ep = 1/1e+05, sw = 0,
                    Cov.in)
{
  N = length(z)
  if (missing(xlim)) {
    if (N > 5e+05)
      b = 1
    else b = 4.3 * exp(-0.26 * log(N, 10))
    xlim = c(median(z), b * diff(quantile(z)[c(2, 4)])/(2 *
                                                          qnorm(0.75)))
  }
  aorig = xlim[1] - xlim[2]
  borig = xlim[1] + xlim[2]
  z0 = z[which(z >= aorig & z <= borig)]
  N0 = length(z0)
  Y = c(mean(z0), mean(z0^2))
  that = N0/N
  for (j in seq(Jmle)) {
    bet = c(d/s^2, -1/(2 * s^2))
    aa = (aorig - d)/s
    bb = (borig - d)/s
    H0 = pnorm(bb) - pnorm(aa)
    fa = dnorm(aa)
    fb = dnorm(bb)
    H1 = fa - fb
    H2 = H0 + aa * fa - bb * fb
    H3 = (2 + aa^2) * fa - (2 + bb^2) * fb
    H4 = 3 * H0 + (3 * aa + aa^3) * fa - (3 * bb + bb^3) *
      fb
    H = c(H0, H1, H2, H3, H4)
    r = d/s
    I = matrix(rep(0, 25), 5)
    for (i in seq(from=0, to=4)) I[i + 1, 0:(i + 1)] = choose(i, 0:i)
    u1 = s^(seq(from=0, to=4))
    II = pmax(row(I) - col(I), 0)
    II = r^II
    I = u1 * (I * II)
    E = as.vector(I %*% H)/H0
    E1 = E[2]
    E2 = E[3]
    E3 = E[4]
    E4 = E[5]
    mu = c(E1, E2)
    V = matrix(c(E2 - E1^2, E3 - E1 * E2, E3 - E1 * E2, E4 -
                   E2^2), 2)
    bett = bet + solve(V, Y - mu)/(1 + 1/j^2)
    if (bett[2] > 0)
      bett = bet + 0.1 * solve(V, Y - mu)/(1 + 1/j^2)
    if (is.na(bett[2]))
      break
    else if (bett[2] >= 0)
      break
    d = -bett[1]/(2 * bett[2])
    s = 1/sqrt(-2 * bett[2])
    if (sum((bett - bet)^2)^0.5 < ep)
      break
  }
  if (is.na(bett[2])) {
    mle = rep(NA, 6)
    Cov.lfdr = NA
    Cor = matrix(NA, 3, 3)
  }
  else if (bett[2] >= 0) {
    mle = rep(NA, 6)
    Cov.lfdr = Cov.out = NA
    Cor = matrix(NA, 3, 3)
  }
  else {
    aa = (aorig - d)/s
    bb = (borig - d)/s
    H0 = pnorm(bb) - pnorm(aa)
    p0 = that/H0
    J = s^2 * matrix(c(1, 0, 2 * d, s), 2)
    JV = J %*% solve(V)
    JVJ = JV %*% t(J)
    mat2 = cbind(0, JVJ/N0)
    mat1 = c((p0 * H0 * (1 - p0 * H0))/N, 0, 0)
    mat = rbind(mat1, mat2)
    h = c(H1/H0, (H2 - H0)/H0)
    matt = c(1/H0, -(p0/s) * t(h))
    matt = rbind(matt, cbind(0, diag(2)))
    C = matt %*% (mat %*% t(matt))
    mle = c(p0, d, s, diag(C)^0.5)
    if (sw == 1) {
      sd = mle[4:6]
      Co = C/outer(sd, sd)
      dimnames(Co) = list(c("p0", "d", "s"), c("p0", "d",
                                               "s"))
      Cor = Co[c(2, 3, 1), c(2, 3, 1)]
    }
    if (!missing(Cov.in)) {
      i0 = which(Cov.in$x > aa & Cov.in$x < bb)
      Cov.out = loccov(N, N0, p0, d, s, Cov.in$x, Cov.in$X,
                       Cov.in$f, JV, Y, i0, H, h, Cov.in$sw)
    }
  }
  names(mle) = c("p0", "del0", "sig0", "sd.p0", "sd.del0",
                 "sd.sig0")
  mle = mle[c(2, 3, 1, 5, 6, 4)]
  out = list(mle = mle)
  if (sw == 1) {
    Cor = list(Cor = Cor)
    out = c(out, Cor)
  }
  if (!missing(Cov.in)) {
    if (Cov.in$sw == 2) {
      pds. = list(pds. = Cov.out)
      out = c(out, pds.)
    }
    else if (Cov.in$sw == 3) {
      Ilfdr = list(Ilfdr = Cov.out)
      out = c(out, Ilfdr)
    }
    else {
      Cov.lfdr = list(Cov.lfdr = Cov.out)
      out = c(out, Cov.lfdr)
    }
  }
  if ((sw == 1) | !missing(Cov.in))
    return(out)
  else return(mle)
}


#' This is the implementation of Efron's local fdr with some additions
#' regarding the return values. It is licensed under GPL2.
#'
#' @noRd
loccov2 <- function (X, X0, i0, f, ests, N)
{
  d = ests[1]
  s = ests[2]
  p0 = ests[3]
  theo = I(ncol(X0) == 1)
  Xtil <- X[i0, ]
  X0til <- X0[i0, ]
  G <- t(X) %*% (f * X)
  G0 <- t(X0til) %*% X0til
  B0 <- X0 %*% (solve(G0) %*% t(X0til)) %*% Xtil
  C <- B0 - X
  Ilfdr = C %*% solve(G, t(X))
  Cov <- C %*% solve(G) %*% t(C)
  if (theo)
    D = matrix(1, 1, 1)
  else D = matrix(c(1, 0, 0, d, s^2, 0, s^2 + d^2, 2 * d *
                      s^2, s^3), 3)
  gam. = solve(G0, t(X0til)) %*% (Xtil %*% solve(G, t(X)))
  pds. = D %*% gam.
  if (theo)
    pds. = rbind(pds., matrix(0, 2, nrow(X)))
  pds.[1, ] = pds.[1, ] - 1/N
  m1 = pds. %*% f
  m2 = pds.^2 %*% f
  stdev = as.vector(sqrt(m2 - m1^2/N))
  stdev[1] = p0 * stdev[1]
  pds.[1, ] = p0 * pds.[1, ]
  rownames(pds.) = c("p", "d", "s")
  list(Ilfdr = Ilfdr, pds. = pds., stdev = stdev, Cov = Cov)
}


#' @noRd
loccov <- function (N, N0, p0, d, s, x, X, f, JV, Y, i0, H, h, sw)
{
  M = rbind(1, x - Y[1], x^2 - Y[2])
  if (sw == 2) {
    K = length(x)
    K0 = length(i0)
    toprow = c(1 - N0/N, -t(h) %*% JV/s)
    botrow = cbind(0, JV/p0)
    mat = rbind(toprow, botrow)
    M0 = M[, i0]
    dpds.dy0 = mat %*% M0/N/H[1]
    dy0.dy = matrix(0, K0, K)
    dy0.dy[, i0] = diag(1, K0)
    dpds.dy = dpds.dy0 %*% dy0.dy
    rownames(dpds.dy) = c("p", "d", "s")
    return(dpds.dy)
  }
  else {
    xstd = (x - d)/s
    U = cbind(xstd - H[2]/H[1], xstd^2 - H[3]/H[1])
    M[, -i0] = 0
    dl0plus.dy = cbind(1 - N0/N, U %*% JV/s) %*% M/N/H[1]/p0
    G <- t(X) %*% (f * X)
    dl.dy = X %*% solve(G) %*% t(X)
    dlfdr.dy = dl0plus.dy - dl.dy
    if (sw == 3)
      return(dlfdr.dy)
    else {
      Cov.lfdr = dlfdr.dy %*% (f * t(dlfdr.dy))
      return(Cov.lfdr)
    }
  }
}
dirmeier/knockout documentation built on Feb. 15, 2020, 9:11 p.m.