scatter.plot.train <- function(coef_train, trainingData, trainingLabel, outPath) {
nPath <- length(trainingLabel) - 1
trainL <- character(length = length(unlist(trainingLabel)))
for (i in 1:(nPath + 1)) {
if (i == 1) {
x <- unique(trainingLabel[[i]])
names(x) <- paste("control", seq_len(length(x)), sep = "")
for (j in seq_len(length(x))) {
trainL[x[[j]]] <- rep(names(x)[j], length(x[[j]]))
}
} else {
trainL[trainingLabel[[i]]] <- rep(names(trainingLabel)[i],
length(trainingLabel[[i]]))
}
}
trainL <- trainL[trainL != ""]
grDevices::pdf(outPath)
for (i in 1:nPath) {
HMEC_samples <- seq_len(ncol(trainingData))
Pathway_strength_HMEC <- coef_train[, i]
graphics::plot(HMEC_samples, Pathway_strength_HMEC, col = as.factor(trainL),
xlab = "HMEC sample",
ylab = paste(names(trainingLabel)[i + 1], "pathway activity",
sep = " "),
main = paste("Cross-validation in HMEC",
names(trainingLabel)[i + 1], "pathway",
sep = " "),
pch = 19, cex = 0.7)
graphics::legend("topleft", legend = unique(trainL), pch = 19, cex = 0.7,
col = as.numeric(as.factor(unique(trainL))))
}
invisible(grDevices::dev.off())
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.