examples/website_script.R

library(monocle3)

# Load the data
expression_matrix <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_expression.rds"))
cell_metadata <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_colData.rds"))
gene_annotation <- readRDS(url("http://staff.washington.edu/hpliner/data/cao_l2_rowData.rds"))

# Make the CDS object
cds <- new_cell_data_set(expression_matrix,
                                   cell_metadata = cell_metadata,
                                   gene_metadata = gene_annotation)

cds <- preprocess_cds(cds, num_dim = 100)

plot_pc_variance_explained(cds)

cds <- reduce_dimension(cds)

plot_cells(cds)

plot_cells(cds, color_cells_by="cao_cell_type")

plot_cells(cds, genes=c("cpna-2", "egl-21", "ram-2", "inos-1"))

cds <- reduce_dimension(cds, reduction_method="tSNE")

plot_cells(cds, reduction_method="tSNE", color_cells_by="cao_cell_type")

plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)

cds = preprocess_cds(cds, num_dim = 100, residual_model_formula_str = "~ plate")
cds = reduce_dimension(cds)
plot_cells(cds, color_cells_by="plate", label_cell_groups=FALSE)

cds = cluster_cells(cds, resolution=c(10^seq(-6,-1)))
plot_cells(cds)

plot_cells(cds, color_cells_by="partition", group_cells_by="partition")

plot_cells(cds, color_cells_by="cao_cell_type")

plot_cells(cds, color_cells_by="cao_cell_type", label_groups_by_cluster=FALSE)

pheatmap::pheatmap(log(table(clusters(cds), colData(cds)$cao_cell_type)+1),
                   clustering_method="ward.D2",
                   fontsize=6)

marker_test_res = top_markers(cds, group_cells_by="partition", reference_cells=1000, cores=8)

top_specific_markers = marker_test_res %>%
    filter(fraction_expressing >= 0.10) %>%
    group_by(cell_group) %>%
    top_n(1, pseudo_R2)

top_specific_marker_ids = unique(top_specific_markers %>% pull(gene_id))

plot_genes_by_group(cds,
                    top_specific_marker_ids,
                    group_cells_by="partition",
                    ordering_type="maximal_on_diag",
                    max.size=3)

top_specific_markers = marker_test_res %>%
    filter(fraction_expressing >= 0.10) %>%
    group_by(cell_group) %>%
    top_n(3, pseudo_R2)

top_specific_marker_ids = unique(top_specific_markers %>% pull(gene_id))

plot_genes_by_group(cds,
                    top_specific_marker_ids,
                    group_cells_by="partition",
                    ordering_type="cluster_row_col",
                    max.size=3)

colData(cds)$assigned_cell_type = as.character(partitions(cds))

colData(cds)$assigned_cell_type = dplyr::recode(colData(cds)$assigned_cell_type,
                                                "1"="Body wall muscle",
                                                "2"="Germline",
                                                "3"="Unclassified neurons",
                                                "4"="Seam cells",
                                                "5"="Coelomocytes",
                                                "6"="Pharyngeal epithelia",
                                                "7"="Vulval precursors",
                                                "8"="Non-seam hypodermis",
                                                "9"="Intestinal/rectal muscle",
                                                "10"="Touch receptor neurons",
                                                "11"="Pharyngeal neurons",
                                                "12"="Am/PH sheath cells",
                                                "13"="NA",
                                                "14"="Unclassified neurons",
                                                "15"="flp-1(+) interneurons",
                                                "16"="Canal associated neurons",
                                                "17"="Pharyngeal gland",
                                                "18"="Other interneurons",
                                                "19"="Ciliated sensory neurons",
                                                "20"="Ciliated sensory neurons",
                                                "21"="Ciliated sensory neurons",
                                                "22"="Ciliated sensory neurons",
                                                "23"="Ciliated sensory neurons",
                                                "24"="Ciliated sensory neurons",
                                                "25"="Oxygen sensory neurons",
                                                "26"="Ciliated sensory neurons",
                                                "27"="Unclassified neurons",
                                                "28"="Pharyngeal gland",
                                                "29"="Ciliated sensory neurons",
                                                "30"="Ciliated sensory neurons",
                                                "31"="Ciliated sensory neurons",
                                                "32"="Ciliated sensory neurons",
                                                "33"="Pharyngeal muscle",
                                                "34"="Failed QC")

plot_cells(cds, group_cells_by="partition", color_cells_by="assigned_cell_type")

cds_subset = choose_cells(cds)

pr_graph_test_res = graph_test(cds_subset, neighbor_graph="knn", cores=8)
pr_deg_ids = row.names(subset(pr_graph_test_res, morans_I > 0.01 & q_value < 0.05))

gene_module_df = find_gene_modules(cds_subset[pr_deg_ids,], resolution=1e-3)

plot_cells(cds_subset, genes=gene_module_df, show_trajectory_graph=FALSE, label_cell_groups=FALSE)

plot_cells(cds_subset, color_cells_by="cluster")

colData(cds_subset)$assigned_cell_type = as.character(clusters(cds_subset)[colnames(cds_subset)])
colData(cds_subset)$assigned_cell_type = dplyr::recode(colData(cds_subset)$assigned_cell_type,
                                                      "30"="Vulval precursors",
                                                      "65"="Distal tip cells",
                                                      "24"="Sex myoblasts",
                                                      "51"="Sex myoblasts",
                                                      "33"="Somatic gonad progenitors")
plot_cells(cds_subset, group_cells_by="cluster", color_cells_by="assigned_cell_type")

colData(cds)[colnames(cds_subset),]$assigned_cell_type = colData(cds_subset)$assigned_cell_type
cds = cds[,colData(cds)$assigned_cell_type != "Failed QC" | is.na(colData(cds)$assigned_cell_type )]
plot_cells(cds, group_cells_by="partition", color_cells_by="assigned_cell_type", labels_per_group=5)

assigned_type_marker_test_res = top_markers(cds,
                                            group_cells_by="assigned_cell_type",
                                            reference_cells=1000,
                                            cores=8)

# Require that markers have at least JS specificty score > 0.5 and
# be significant in the logistic test for identifying their cell type:
garnett_markers = assigned_type_marker_test_res %>%
    filter(marker_test_q_value < 0.01 & specificity >= 0.5) %>%
    group_by(cell_group) %>%
    top_n(5, marker_score)
# Exclude genes that are good markers for more than one cell type:
garnett_markers = garnett_markers %>% group_by(gene_short_name) %>%
    filter(n() == 1)

generate_garnett_marker_file(garnett_markers, file="./marker_file.txt")

## Install the monocle3 branch of garnett
devtools::install_github("cole-trapnell-lab/garnett", ref="monocle3")
BiocManager::install("org.Ce.eg.db")
library(garnett)

colData(cds)$garnett_cluster = clusters(cds)
worm_classifier <- train_cell_classifier(cds = cds,
                                         marker_file = "./marker_file.txt",
                                         db=org.Ce.eg.db::org.Ce.eg.db,
                                         cds_gene_id_type = "ENSEMBL",
                                         num_unknown = 50,
                                         marker_file_gene_id_type = "SYMBOL",
                                         cores=8)

cds = classify_cells(cds, worm_classifier,
                           db = org.Ce.eg.db::org.Ce.eg.db,
                           cluster_extend = TRUE,
                           cds_gene_id_type = "ENSEMBL")

plot_cells(cds,
           group_cells_by="partition",
           color_cells_by="cluster_ext_type")

load(url("https://cole-trapnell-lab.github.io/garnett/classifiers/ceWhole"))
cds = classify_cells(cds, ceWhole,
                           db = org.Ce.eg.db::org.Ce.eg.db,
                           cluster_extend = TRUE,
                           cds_gene_id_type = "ENSEMBL")

expression_matrix = readRDS(url("http://staff.washington.edu/hpliner/data/packer_embryo_expression.rds"))
cell_metadata = readRDS(url("http://staff.washington.edu/hpliner/data/packer_embryo_colData.rds"))
gene_annotation = readRDS(url("http://staff.washington.edu/hpliner/data/packer_embryo_rowData.rds"))

cds <- new_cell_data_set(expression_matrix,
                         cell_metadata = cell_metadata,
                         gene_metadata = gene_annotation)

cds <- preprocess_cds(cds, num_dim = 100, residual_model_formula_str = "~ bg.300.loading + bg.400.loading + bg.500.1.loading + bg.500.2.loading + bg.r17.loading + bg.b01.loading + bg.b02.loading")

cds <- reduce_dimension(cds)
plot_cells(cds, label_groups_by_cluster=FALSE,  color_cells_by = "cell.type")

ciliated_genes = c("che-1",
                   "hlh-17",
                   "nhr-6",
                   "dmd-6",
                   "ceh-36",
                   "ham-1")

plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)

cds <- cluster_cells(cds)
plot_cells(cds, color_cells_by = "partition")

cds <- learn_graph(cds)
plot_cells(cds,
           color_cells_by = "cell.type",
           label_groups_by_cluster=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE)

plot_cells(cds,
           color_cells_by = "embryo.time.bin",
           label_cell_groups=FALSE,
           label_leaves=TRUE,
           label_branch_points=TRUE,
           graph_label_size=1.5)

cds = order_cells(cds)

plot_cells(cds,
           color_cells_by = "pseudotime",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)

# a helper function to identify the root principal points:
get_earliest_principal_node <- function(cds, time_bin="130-170"){
  cell_ids <- which(colData(cds)[, "embryo.time.bin"] == time_bin)

  closest_vertex <-
    cds@principal_graph_aux[["UMAP"]]$pr_graph_cell_proj_closest_vertex
  closest_vertex <- as.matrix(closest_vertex[colnames(cds), ])
  root_pr_nodes <-
    igraph::V(principal_graph(cds)[["UMAP"]])$name[as.numeric(names
      (which.max(table(closest_vertex[cell_ids,]))))]

  root_pr_nodes
}
cds = order_cells(cds, root_pr_nodes=get_earliest_principal_node(cds))

plot_cells(cds,
           color_cells_by = "pseudotime",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)

cds_3d = reduce_dimension(cds, max_components = 3)
cds_3d = cluster_cells(cds_3d)
cds_3d = learn_graph(cds_3d)
cds_3d = order_cells(cds_3d, root_pr_nodes=get_earliest_principal_node(cds))

cds_3d_plot_obj = plot_cells_3d(cds_3d, color_cells_by="partition")

ciliated_genes = c("che-1",
                   "hlh-17",
                   "nhr-6",
                   "dmd-6",
                   "ceh-36",
                   "ham-1")
cds_subset = cds[rowData(cds)$gene_short_name %in% ciliated_genes,]

gene_fits = fit_models(cds_subset, model_formula_str = "~embryo.time")

fit_coefs = coefficient_table(gene_fits)

emb_time_terms = fit_coefs %>% filter(term == "embryo.time")

emb_time_terms %>% filter (q_value < 0.05) %>%
  select(gene_short_name, term, q_value, estimate)

plot_genes_violin(cds_subset, group_cells_by="embryo.time.bin", ncol=2) +
    theme(axis.text.x=element_text(angle=45, hjust=1))

gene_fits = fit_models(cds_subset, model_formula_str = "~embryo.time + batch")
fit_coefs = coefficient_table(gene_fits)
fit_coefs %>% filter(term != "(Intercept)") %>%
  select(gene_short_name, term, q_value, estimate)

evaluate_fits(gene_fits)

time_batch_models = fit_models(cds_subset,
                               model_formula_str = "~embryo.time + batch",
                               expression_family="negbinomial")
time_models = fit_models(cds_subset,
                        model_formula_str = "~embryo.time",
                        expression_family="negbinomial")
compare_models(time_batch_models, time_models) %>% select(gene_short_name, q_value)






neurons_cds = cds[,colData(cds)$assigned_cell_type == "Neurons"]
plot_cells(neurons_cds, color_cells_by="partition")

pr_graph_test_res = graph_test(neurons_cds, neighbor_graph="knn", cores=8)
pr_deg_ids = row.names(subset(pr_graph_test_res, q_value < 0.05))

gene_module_df = find_gene_modules(neurons_cds[pr_deg_ids,], resolution=1e-2)

cell_group_df = tibble::tibble(cell=row.names(colData(neurons_cds)), cell_group=partitions(cds)[colnames(neurons_cds)])
agg_mat = aggregate_gene_expression(neurons_cds, gene_module_df, cell_group_df)
row.names(agg_mat) = stringr::str_c("Module ", row.names(agg_mat))
colnames(agg_mat) = stringr::str_c("Partition ", colnames(agg_mat))

pheatmap::pheatmap(agg_mat, cluster_rows=TRUE, cluster_cols=TRUE,
                   scale="column", clustering_method="ward.D2",
                   fontsize=6)

plot_cells(neurons_cds,
           genes=gene_module_df %>% filter(module %in% c(16,38,33,42)),
           group_cells_by="partition",
           color_cells_by="partition",
           show_trajectory_graph=FALSE)

plot_cells(cds,
           color_cells_by = "cell.type",
           label_groups_by_cluster=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE)

ciliated_cds_pr_test_res = graph_test(cds, neighbor_graph="principal_graph", cores=4)
pr_deg_ids = row.names(subset(ciliated_cds_pr_test_res, q_value < 0.05))

plot_cells(cds, genes=c("hlh-4", "gcy-8", "dac-1", "oig-8"),
           show_trajectory_graph=FALSE,
           label_cell_groups=FALSE,
           label_leaves=FALSE)

gene_module_df = monocle3:::find_gene_modules(cds[pr_deg_ids,], resolution=c(0,10^seq(-6,-1)))

cell_group_df = tibble::tibble(cell=row.names(colData(cds)), cell_group=colData(cds)$cell.type)
agg_mat = aggregate_gene_expression(cds, gene_module_df, cell_group_df)
row.names(agg_mat) = stringr::str_c("Module ", row.names(agg_mat))
pheatmap::pheatmap(agg_mat,
                    scale="column", clustering_method="ward.D2")

plot_cells(cds,
           genes=gene_module_df %>% filter(module %in% c(29,20, 11,22)),
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)

plot_cells(cds, show_trajectory_graph=FALSE)

AFD_genes = c("gcy-8", "dac-1", "oig-8")
AFD_lineage_cds = cds[rowData(AFD_lineage_cds)$gene_short_name %in% AFD_genes,
                      clusters(cds) %in% c(22, 28, 35)]

plot_genes_in_pseudotime(AFD_lineage_cds,
                         color_cells_by="embryo.time.bin",
                         min_expr=0.5)

cds_subset = choose_cells(cds)

subset_pr_test_res = graph_test(cds_subset, cores=4)
pr_deg_ids = row.names(subset(subset_pr_test_res, q_value < 0.05))

gene_module_df = monocle3:::find_gene_modules(cds_subset[pr_deg_ids,], resolution=1e-2)

cell_group_df = tibble::tibble(cell=row.names(colData(cds_subset)), cell_group=clusters(cds_subset)[colnames(cds_subset)])
agg_mat = aggregate_gene_expression(cds_subset, gene_module_df, cell_group_df)
module_dendro = hclust(dist(agg_mat))
gene_module_df$module <- factor(gene_module_df$module, levels = row.names(agg_mat)[module_dendro$order])

plot_cells(cds_subset,
           genes=gene_module_df,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
cole-trapnell-lab/monocle3 documentation built on April 7, 2024, 9:24 p.m.