R/internals.r

Defines functions plotprob roundvector rowswaps ROCinternal bklr bkreg bklr.predict care.exp care.dev mklr mkreg mklr.predict my.care.exp characterplot penlogitfit meanrm wilcoxtestcma

Documented in bklr bklr.predict bkreg care.dev care.exp characterplot mklr mklr.predict mkreg my.care.exp plotprob ROCinternal roundvector rowswaps

### [1] probability plot

plotprob <- function(probmatrix, label, main)
{
   o <- order(label)

   y <- label[o]

   probmatrix <- probmatrix[o,]

   n <- nrow(probmatrix)

   nc <- ncol(probmatrix)

   plot(row(probmatrix), probmatrix, type = "n", xlab = "observation",
        ylab = "probabilities", ylim = c(0, 1.2), axes = FALSE, main = main)

   axis(1)
   axis(2, at = seq(0, 1.2, by = 0.2), labels = c("0.0", "0.2",
        "0.4", "0.6", "0.8", "1.0", ""))

   axis(4)

    for (j in 1:nc)
    {
        points(1:n, probmatrix[,j], col = j + 1, pch=16)
    }

    for (j in 1:(nc - 1))
    {
        abline(v = cumsum(table(y))[j] + 0.5, lty = 2)
    }

    abline(h = 1)

    for(j in 1:nc)
      {
        text(cumsum(table(y))[j] - table(y)[j]/2,
            1.1, labels = as.character(j-1), col=j+1,
            cex=0.9)
      }
}

### [2] for stratified cross-validation

roundvector <- function(x, maxint){
   fx <- floor(x)
   aftercomma <- x-fx
   roundorder <- order(aftercomma, decreasing=TRUE)
   i <- 1
   while(sum(fx) < maxint){ 
    fx[roundorder[i]] <- ceiling(x[roundorder[i]])
    i <- i+1
   }
 return(fx)
}

### [3] for stratified cross-validation -- rowswaps

#rowswaps <- function(binarymatrix){
#  cols <- ncol(binarymatrix)
#  rows <- nrow(binarymatrix)
#  allowedzeros <- ceiling(sum(binarymatrix)/rows)
#  indmatrix <- matrix(rep(1:rows, each=cols), nrow=rows, ncol=cols, byrow=TRUE)
#  while(any(rowSums(binarymatrix) > allowedzeros)){
#    indmatrix <- replicate(cols, sample(1:rows))
#    for(i in 1:cols) binarymatrix[,i] <- binarymatrix[indmatrix[,i], i]
#  }
#  return(indmatrix)
#}

#rowswaps <- function(binmatrix){
#  cols <- ncol(binmatrix)
#  rows <- nrow(binmatrix)
#  allowedzeros <- ceiling(sum(binmatrix)/rows)
#  indmatrix <- matrix(rep(1:rows, each=cols), nrow=rows, ncol=cols, byrow=TRUE)
#  nzeros <- rowSums(binmatrix)
#  diff <- nzeros - allowedzeros
#  K <- sum(diff > 0)
#  if( K==0) return(indmatrix)
#  else{
#  ordzerop <- order(nzeros, decreasing=TRUE)
#  ordzerom <-  rev(ordzerop) 
#  for(k in 1:K){
#    L <- 1
#    temprow <- binmatrix[ordzerop[k],]
#    tempdiff <- diff[ordzerop[k]]
#    while(tempdiff > 0){ 
#    subs <- which(temprow == 1)[1]
#    temprow[subs] <- 0
#    tempind <- which(binmatrix[ordzerom[L], ] == 0)[1]
#    binmatrix[ordzerom[L], tempind] <- 1
#    binmatrix[ordzerop[k],] <- temprow  
#    hilf <- indmatrix[ordzerop[k], subs]
#    indmatrix[ordzerop[k], subs] <-  indmatrix[ordzerom[L], subs]
#    indmatrix[ordzerom[L], tempind] <- hilf
#    tempdiff <- tempdiff-1
#    if( sum(binmatrix[ordzerom[L],]) == allowedzeros) L <- L+1
#    }
#   }
#  }
#  
#  return(indmatrix)
#}

rowswaps <- function(blocklist){

cols <- length(blocklist)
fold <- nrow(blocklist[[1]])
learnmatrix <- blocklist[[1]]
for(i in 2:cols) learnmatrix <- cbind(learnmatrix, blocklist[[i]])
rs <- rowSums( learnmatrix == 0)
allowedzeros <- ceiling(sum(rs)/fold)
indmatrix <-  matrix(rep(1:fold, each=cols), nrow=fold, byrow=TRUE) 
while(any(rs > allowedzeros)){
  indmatrix <- replicate(cols, sample(1:fold))
  temp2list <- blocklist
  for(i in 1:cols) temp2list[[i]] <- blocklist[[i]][indmatrix[,i], ]
  learnmatrix <- temp2list[[1]]
  for(i in 2:cols) learnmatrix <- cbind(learnmatrix, temp2list[[i]])
  rs <- rowSums( learnmatrix == 0)
}
return(indmatrix)
}

### [4] Receiver Operator characteristic

ROCinternal <- function(test, resp, plot, ...)
{
    dotsCall <- substitute(list(...))
          ll <- eval(dotsCall)
          if(!hasArg(xlab)) ll$xlab <- "Threshold for assignment to class 1"
          if(!hasArg(ylab)) ll$ylab <- "specificity for class 0"
          if(!hasArg(main)) ll$main <- "Receiver Operator Characteristic"
          if(!hasArg(lwd)) ll$lwd <- 2
    m <- as.matrix(table(test, resp))
    fv <- as.numeric(row.names(m))
    nr <- dim(m)[1]
    a <- apply(m, 2, sum)
    m <- addmargins(m, 2)
    m <- apply(m[nr:1, ], 2, cumsum)[nr:1, ]
    sn <- c(m[, 2]/a[2], 0)
    sp <- c((a[1] - m[, 1])/a[1], 1)
    pvp <- c(m[, 2]/m[, 3], 1)
    pvn <- (a[1] - m[, 1])/(sum(a) - m[, 3])
    pvn <- c(pvn, rev(pvn)[1])
    res <- data.frame(cbind(sn, sp, pvp, pvn, c(NA, fv)))
    auc <- sum((res[-1, 1] +res[-nr, 1])/2 * diff(res[, 2]))
    #xl <- range(test)
    #ll$x <- xl
    #ll$y <- 0:1
    #ll$xlim <- xl
    #ll$ylim <- 0:1
    #ll$type <- "n"
    ll$x <- 1-res[,2]
    ll$y <- res[,1]
    ll$xlim <- 0:1
    ll$xlab <- "1-specificity"
    ll$ylim <- 0:1
    ll$ylab <- "Sensitivity"
    ll$type <- "n"
    if(plot){
    do.call("plot", args=ll)
            #plot(xl, 0:1, xlim = xl, xlab = paste(deparse(substitute(test)), 
            #    "(grid at deciles)"), ylim = 0:1, ylab = " ", 
            #    type = "n")
            
     #plot(1 - res[, 2], res[, 1], xlim = 0:1, xlab = "1-Specificity",
     #       ylim = 0:1, ylab = "Sensitivity", type = "n", ...)
     #   if (grid)
     #       abline(h = 0:10/10, v = 0:10/10, col = gray(0.9))
     #   abline(0, 1, col = gray(0.4))
        box()
     ll$type <- "l"
     do.call("lines", args = ll)

            
    #box()
    #ll$xlim <- NULL
    #ll$ylim <- NULL
    #ll$type <- "l"
    #ll$x <- fv
    #ll$y <- res[, 2]
    #ll$left <- TRUE
    #ll$order <- TRUE
    #do.call("steplines", args=ll)
    plot(function(x) x, from=0, to=1, lty="dashed", add=TRUE)
    text(0.8, 0.1, cex=2, label=paste("AUC=", round(auc,3), sep=""))
    }
    names(auc) <- "auc"
    return(invisible(auc))
}

### [6] penalized logistic regression

bklr <- function(y, Ka, Kp, lambda, w = 1, eps = 0.001, maxit = 20)
{
  N <- length(y)
  if(is.vector(Ka)) {
    p <- 1
    D <- rbind(0, cbind(0, 1))
    d <- Kp
    U <- 1/sqrt(d)
    bigU <- diag(c(1, U))
    Ka <- cbind(1, Ka * U)
  }
  else {
    p <- ncol(Ka)
    Kpeigen <- eigen(Kp, symmetric = TRUE)
    D <- rbind(0, cbind(0, diag(p)))
    d <- abs(Kpeigen$values)
    d[d < .Machine$double.eps] <- .Machine$double.eps
    U <- Kpeigen$vectors %*% diag(1/sqrt(d))
    bigU <- cbind(c(1, rep(0, p)), rbind(0, U))
    Ka <- cbind(1, Ka %*% U)
  }
  ybar <- mean(y)
  mu <- rep(ybar, N)
  beta0 <- binomial()$linkfun(ybar)
  beta <- c(beta0, rep(0, p))
  eta <- rep(beta0, N)
  wt <- sqrt((binomial()$mu.eta(mu)^2)/binomial()$variance(mu))
  z1 <- eta + (y - mu)/(binomial()$mu.eta(mu))
  tmpWZ <- wt * z1
  z2 <- t(Ka) %*% tmpWZ
  normd <- 1
  iter <- 0
  while((normd > eps) && (iter < maxit)) {
    beta.old <- beta
    tmpRes <- bkreg(z2, wt, lambda, Ka, D)
    beta <- tmpRes$beta
    eta <- tmpRes$fit
    mu <- binomial()$linkinv(eta)
    wt <- sqrt((binomial()$mu.eta(mu)^2)/binomial()$variance(mu))
    z1 <- eta + (y - mu)/(binomial()$mu.eta(mu))
    tmpWZ <- wt * z1
    z2 <- t(Ka) %*% tmpWZ
    normd <- sum((beta.old - beta)^2)/sum(beta.old^2)
    iter <- iter + 1
  }
  alpha <- bigU %*% beta
  predict <- (sign(eta) + 1)/2
  list(fit = eta, mu = mu, alpha = alpha, predict = predict, wt = wt)
}


bkreg <- function(z2, wt, lambda, Ka, D)
{
  K <- t(Ka) %*% (Ka * as.vector(wt)) + lambda * D
  svdK <- svd(K)
  if(any(svdK$d < .Machine$doubl.eps))
  stop("Numerical problems occured in plrCMA: kernel matrix is computationally singualar. Please check the input X. \n")
  invK <- svdK$v %*% diag(1/svdK$d, nrow(K)) %*% t(svdK$u)
  beta <- invK %*% z2
  fit <- Ka %*% beta
  list(beta = beta, fit = fit, invK = invK)
}

bklr.predict <- function(alpha, kernel, y = NULL)
{
  eta <- cbind(1, kernel) %*% alpha
  junk <- care.exp(eta)
  mu <- junk/(1 + junk)
  if (is.null(y))
    return( list(mu = mu, fit = eta, dev = NULL) )
  dev <- care.dev(mu, y)
  list(mu = mu, fit = eta, dev = dev)
}

care.exp <- function(x, thresh = 100) {
  about36 <-  - log(.Machine$double.eps)
  thresh <- max(c(thresh, about36))
  if( any(abs(x) > thresh) )
    warning("Fitted values over thresh")
  x[x > thresh] <- thresh
  x[x < ( - thresh)] <-  - thresh
  exp(x)
}

care.dev <- function(mu, y) {
  dev <- y * log(mu) + (1 - y) * log(1 - mu)
  if(any(small <- mu * (1 - mu) < .Machine$double.eps)) {
    warning("Fitted values close to 0 or 1")
    smu <- mu[small]
    sy <- y[small]
    smu <- ifelse(smu < .Machine$double.eps, .Machine$double.eps,
                  smu)
    onemsmu <- ifelse((1 - smu) < .Machine$double.eps,
                      .Machine$double.eps, 1 - smu)
    dev[small] <- sy * log(smu) + (1 - sy) * log(onemsmu)
  }
  -sum(dev)
}

mklr <- function(y, Ka, lambda, eps=0.001, maxit=30)
{
  N <- dim(y)[1]
  M <- dim(y)[2]
  bigU <- vector("list", length=M)
  bigKa <- vector("list", length=M)
  lend <- NULL
  beta <- vector("list", length=M)
  beta0 <- NULL
  z1 <- vector("list", length=M)
  z2 <- vector("list", length=M)
  z10 <- NULL
  z20 <- NULL
  for (i in 1:M) {
    Kpeigen <- eigen(Ka[,,i], symmetric=TRUE)
    d <- Kpeigen$values
    d <- d[d >= .Machine$double.eps]
    lend[i] <- length(d)
    bigU[[i]] <- Kpeigen$vectors[,seq(lend[i])] %*% diag(1/sqrt(d))
    bigKa[[i]] <- Kpeigen$vectors[,seq(lend[i])] %*% diag(sqrt(d))
    beta[[i]] <- rep(0, lend[i])
    z1[[i]] <- rep(0, lend[i])
    z2[[i]] <- rep(0, lend[i])
  }
  
  ybar <- apply(y, 2, mean)
  mu <- matrix(ybar, nrow=N, ncol=M, byrow=TRUE)
  beta0 <- log(ybar) - mean(log(ybar))
  eta <- matrix(beta0, nrow=N, ncol=M, byrow=TRUE)

  wteta <- (1-mu)*mu*eta
  for (i in 1:M) {
    z1[[i]] <- t(bigKa[[i]]) %*% wteta[,i]
    z2[[i]] <- t(bigKa[[i]]) %*% (y[,i] - mu[,i])
    z10[i] <- sum(wteta[,i])
    z20[i] <- sum(y[,i] - mu[,i])
  }
  dev <- -2 * (sum(eta * y, na.rm = TRUE) - sum(log(apply(my.care.exp(eta,
                              thresh=300), 1, sum))))
  pdev <- dev
  
  crit1 <- 1
  crit2 <- 1
  crit3 <- 1
  iter <- 0
  while((crit1 > eps || crit2 > eps/10 || crit3 > eps) & (iter < maxit)) {
    beta.old <- beta
    pdev.old <- pdev
    tmpRes <- mkreg(z1, mu, lambda, bigKa, lend, y, beta.old, pdev.old,
                    z2, z10, z20)
    beta <- tmpRes$beta
    beta0 <- tmpRes$beta0
    eta <- tmpRes$fit

    if ( any(abs(eta) > 37) )
      warning("eta in mklr > 37\n")
    junk <- my.care.exp(eta, thresh=300)
    mu <- junk/apply(junk, 1, sum)

    wteta <- (1-mu)*mu*eta
    for (i in 1:M) {
      z1[[i]] <- t(bigKa[[i]]) %*% wteta[,i] + lambda * beta[[i]]
      z2[[i]] <- t(bigKa[[i]]) %*% (y[,i] - mu[,i]) - lambda * beta[[i]]
      z10[i] <- sum(wteta[,i])
      z20[i] <- sum(y[,i] - mu[,i])
    }

    bold <- 0
    bnew <- 0
    znew <- 0
    for (i in 1:M) {
      bold <- bold + sum(beta.old[[i]]^2)
      bnew <- bnew + sum((beta.old[[i]] - beta[[i]])^2)
      znew <- znew + sum(z2[[i]]^2) + z20[i]^2
    }
    crit3 <- znew/(sum(lend)+M)
    pdev <- tmpRes$pdev
    crit2 <- abs((pdev.old - pdev)/pdev.old)
    crit1 <- bnew/bold
    iter <- iter + 1
  }
  
  alpha <- matrix(0, nrow=N+1, ncol=M)
  alpha[1,] <- beta0
  for (i in 1:M)
    alpha[2:(N+1),i] <- bigU[[i]] %*% beta[[i]]
  
  predict <- matrix(apply(mu, 1, order), nrow=M)[M,]
  wt <- mu*(1-mu)

  df <- 0
  for (i in 1:M) {
    KK <- t(bigKa[[i]]) %*% (bigKa[[i]] * wt[,i])
    df <- df + sum(diag(solve(KK + lambda * diag(lend[i]), KK)))
  }
  df <- df + M
  
  list(kclass=M, alpha=alpha, mu=mu, fit=eta, predict=predict, wt=wt,
       lend=lend, df=df)
}


mkreg <- function(z1, mu, lambda, bigKa, lend, y, beta.old, pdev.old, z2,
                  z10, z20) {
  N <- dim(mu)[1]
  M <- dim(mu)[2]

  j <- 0
  repeat {
    beta <- beta.old
    beta0 <- NULL
    tmppenal <- 0
    fit <- matrix(0, nrow=N, ncol=M)
    #cat("j", j, "\n")
    for (i in 1:M) {
      wt <- mu[,i] * (1-mu[,i])
      tmpW <- t(bigKa[[i]]) %*% wt
      tmpZ <- z1[[i]] + z2[[i]]/2^j
      tmpZ0 <- z10[i] + z20[i]/2^j
      KK <- t(bigKa[[i]]) %*% (bigKa[[i]]*wt) + lambda * diag(lend[i])
      tcoef <- solve(KK, cbind(tmpW, tmpZ))
      zcoef <- bigKa[[i]] %*% tcoef
      beta0[i] <- (tmpZ0 - sum(wt * zcoef[,2]))/sum(wt * (1 - zcoef[,1]))
      beta[[i]] <- tcoef[,2] - tcoef[,1] * beta0[i]
      fit[,i] <- zcoef[,2] - zcoef[,1] * beta0[i] + beta0[i]
      tmppenal <- tmppenal + sum(beta[[i]]^2)
    }
    beta0 <- beta0 - mean(beta0)

    ##if ( any(abs(fit) > 37) )
      #warning("fit in mkreg > 37\n")
    tmpDev <- -2 * (sum(fit * y, na.rm = TRUE) - sum(log(apply(my.care.exp(fit, thresh=300),1, sum))))
    tmpPdev <- tmpDev + lambda*tmppenal
    
    j <- j+1
    if (tmpPdev < pdev.old || j > 10)
      break
  }
  
  list(beta = beta, fit = fit, pdev=tmpPdev, beta0 = beta0)
}

mklr.predict <- function(klrfit, kernel, y = NULL)
{
  kclass <- klrfit$kclass
  N <- dim(y)[1]
  tmpind <- !is.na(y[,1])
  eta <- matrix(0, nrow=N, ncol=kclass)
  for (k in 1:kclass)
    eta[,k] <- cbind(1, kernel[,,k]) %*% klrfit$alpha[,k]
  junk1 <- my.care.exp(eta)
  junk2 <- apply(junk1, 1, sum)
  mu <- junk1/junk2
  predict <- matrix(apply(mu, 1, order), nrow=kclass)[kclass,]
  dev <- -2 * (sum(eta*y, na.rm=TRUE) - sum(log(junk2[tmpind]))) / sum(tmpind)
  
  list(mu = mu, predict = predict, dev = dev)
}

my.care.exp <- function(x, thresh = about36)
{
  about36 <-  - log(.Machine$double.eps)
  thresh <- max(c(thresh, about36))
  x[x > thresh] <- thresh
  x[x < ( - thresh)] <-  - thresh
  exp(x)
}

### [7] helper function for variable importance plot 

characterplot <- function(char, x, y, deltax, deltay, cex=1){
spltchar <- unlist(strsplit(char, ""))
for(s in seq(along=spltchar)) points(x+(s-1)*deltax, y+deltay, pch=spltchar[s], cex=cex)
}

### [8] for probability calculations in discriminant analysis for high dimensional
### data

safeexp <- function (x)
{
    xx = sign(x) * pmin(abs(x), 500)
    return(exp(xx))
}

### [9] L_2 penalized logistic regression routine for pls_lr

penlogitfit <- function(Z, y, lambda){
 ### preparations
 fam <- binomial()
 invlink <- fam$linkinv
 pp <- ncol(Z)-1
 eps <- 1e-10
 converged <- FALSE
 iter <- 0
 maxiter <- 25
 ###
 beta <- c(glm.fit(Z[,1],y)$coef, rep(0, pp))
  while((iter <= maxiter) & !converged){
    eta <- Z %*% beta
    mu <- invlink(eta)
    res <- y - mu
    grad <- t(Z) %*% res - c(0, rep(lambda, pp))
    d <- fam$mu.eta(eta)
    sigma <- fam$variance(mu)
    w <- drop(sqrt(d*d/sigma)) 
    Ztw <- t(w*Z)
    H <- -tcrossprod(Ztw)
    diag(H)[-1] <- diag(H)[-1] - lambda
    dir <- qr.solve(-H, grad)
    betaold <- beta
    beta <- beta + dir
    if(sqrt(sum((beta - betaold)^2)/sum(betaold * betaold)) < eps)
    converged <- TRUE
    iter <- iter+1
  }
  if(!converged) stop("Convergence failure in penalized logistic regression \n")
  else return(beta)
}



### [10] mean using rm=T (needed in compare.r) 

meanrm<-function(x){
mean(x,na.rm=T)
}

### [11] cma-compatible wilcoxontest
wilcoxtestcma<-function(x,y){
	
	1-wilcox.test(x~y)$p.value
}
chbernau/CMA documentation built on May 17, 2019, 12:04 p.m.