R/mnems_low.r

Defines functions MCMC addgrid dnf2adj simulateDnf mytc adj2dnf llrScore graph2adj plot.adj adj2dnf theta2theta getSgenes getSgeneN modules doMean nemEst nemEst2 annotAdj getProbs estimateSubtopo getLL learnk modData initps initComps getRho modAdj fullTransProb transProb calcEvopen sortAdj random_probs2 random_probs mnemh.rec uniques Kratio bigphi llfree

#' @noRd
llfree <- function(D, phi, theta) {
    Dnorm <- D
    Dnorm[D > 0] <- 1
    Dnorm[D <= 0] <- -1
    phi <- mytc(phi)
    phi <- phi[colnames(D), ]
    Fmat <- phi%*%theta
    Fmat[Fmat == 0] <- -1
    notlh <- 1 - sum(abs(D - t(Fmat)))/sum(abs(D + Dnorm))
    return(notlh)
}
#' Originally imported from the package 'nem'.
#' @noRd
#' @importFrom e1071 bincombinations
#' @author Florian Markowetz
enumerate.models <- function (x, name = NULL, trans.close = TRUE,
                              verbose = TRUE) {
    if (length(x) == 1) {
        n <- as.numeric(x)
        if (is.null(name))
            name <- letters[seq_len(n)]
    }
    else {
        n <- length(x)
        name <- x
    }
    if (n == 1)
        stop("nem> choose n>1!")
    if (n > 5)
        stop(paste0("nem> exhaustive enumeration not ",
                    "feasible with more than 5 perturbed genes"))
    if (n == 5)
        cat("nem> this will take a while ... \n")
    bc <- e1071::bincombinations(n * (n - 1))
    fkt1 <- function(x, n, name) {
        M <- diag(n)
        M[which(M == 0)] <- x
        dimnames(M) <- list(name, name)
        if (trans.close)
            M <- transitive.closure(M)
        return(list(M))
    }
    models <- apply(bc, 1, fkt1, n, name)
    models <- unique(matrix(unlist(models), ncol = n * n, byrow = TRUE))
    fkt2 <- function(x, n, name) {
        M <- matrix(x, n)
        dimnames(M) <- list(name, name)
        return(list(M))
    }
    models <- unlist(apply(models, 1, fkt2, n, name), recursive = FALSE)
    if (verbose)
        cat("Generated", length(models), "unique models ( out of",
            2^(n * (n - 1)), ")\n")
    return(models)
}
#' Originally imported from the package 'nem'.
#' @noRd
#' @author Holger Froehlich, Cordula Zeller
sampleRndNetwork <- function (Sgenes, scaleFree = TRUE, gamma = 2.5,
                              maxOutDegree = length(Sgenes),
                              maxInDegree = length(Sgenes), trans.close = TRUE, DAG = FALSE) {
    n = length(Sgenes)
    S = diag(n)
    maxOutDegree = min(n, maxOutDegree)
    degprob = (0:maxOutDegree)^(-gamma)
    degprob[1] = 1
    degprob = degprob/sum(degprob)
    for (i in seq_len(n)) {
        if (scaleFree)
            outdeg = sample(0:maxOutDegree, 1, prob = degprob)
        else outdeg = sample(0:maxOutDegree, 1)
        if (outdeg > 0) {
            if (!DAG)
                idx0 = which(S[i, ] == 0)
            else idx0 = which(S[i, ] == 0 & seq_len(n) < i)
            if (length(idx0) > 0) {
                idx = which(colSums(S[, idx0, drop = FALSE]) <=
                                maxInDegree)
                if (length(idx) > 0) {
                    idx = sample(idx0[idx], min(outdeg, length(idx0[idx])),
                                 replace = TRUE)
                    S[i, idx] = 1
                }
            }
        }
    }
    if (trans.close)
        S = transitive.closure(S)
    diag(S) = 0
    colnames(S) = Sgenes
    rownames(S) = Sgenes
    S
}
#' @noRd
#' @importFrom methods is
bigphi <- function(x) {
    if (is(x, "mnemsim")) {
        resfull <- NULL
        for (l in seq_len(length(x$Nem))) {
            tmp <- transitive.closure(x$Nem[[l]])
            resfull <- cbind(resfull, t(tmp))
        }
    } else {
        resfull <- NULL
        for (l in seq_len(length(x$comp))) {
            tmp <- transitive.closure(x$comp[[l]]$phi)
            colnames(tmp) <- rownames(tmp) <- seq_len(nrow(tmp))
            resfull <- cbind(resfull, t(tmp))
        }
    }
    return(resfull)
}
#' @noRd
Kratio <- function(x, y) {
    xn <- length(unlist(x$comp, recursive = FALSE))/2
    yn <- length(y$Nem)
    z <- xn/yn
    return(z)
}
#' @noRd
uniques <- function(x) {
    for (i in seq_len(length(x$comp))) {
        x$comp[[i]]$theta <- NULL
    }
    y <- length(unique(x$comp))
    return(y)
}
#' @noRd
mnemh.rec <- function(data, k = 2, logtype = 2, ...) {
    tmp <- mnemk(data, ks=seq_len(k), logtype = logtype, ...)
    cluster <- apply(getAffinity(tmp$best$probs,
                                 logtype = logtype,
                                 mw = tmp$best$mw), 2, which.max)
    if (length(tmp$best$comp) == 1) {
        return(tmp$best)
    } else {
        tmp1 <- NULL
        for (i in seq_len(length(tmp$best$comp))) {
            if (length(unique(colnames(data[, which(cluster == i)]))) > 1) {
                tmp2 <- mnemh.rec(data[, which(cluster == i)],
                                  k=k, logtype=logtype, ...)
            } else {
                tmp2 <- NULL
            }
            tmp1 <- c(tmp1, tmp2)
        }
        return(tmp1)
    }
}
#' @noRd
random_probs <- function(k, data, full = FALSE, logtype = 2) {
    samplefun <- function(n,p) {
        x <- sample(c(0.5,1.5), n,
                    replace = TRUE,
                    prob = p)

        return(x)
    }
    probs <- matrix(log(samplefun(k*ncol(data),
                                  c(0.9, 0.1)))/log(logtype), k,
                    ncol(data))
    if (full) {
        for (i in seq_len(k)) {
            if (i == 1) { next() }
            infcells <- which(apply(probs, 2, function(x) {
                bad <- FALSE
                if (all(is.infinite(x))) {
                    bad <- TRUE
                }
                return(bad)
            }))
            if (i == k) {
                probs[i, infcells] <- log(1)/log(logtype)
            } else {
                probs[i, infcells] <-
                    log(samplefun(length(infcells),
                                  c(1-1/k, 1/k)))/log(logtype)
            }
        }
    }
    while(any(apply(probs, 1, function(x) {
        bad <- FALSE
        if (all(is.infinite(x)) | all(x == 0)) {
            bad <- TRUE
        }
        return(bad)
    }))) {
        probs <- matrix(log(samplefun(k*ncol(data),
                                      c(0.9, 0.1)))/log(logtype), k,
                        ncol(data))
        if (full) {
            for (i in seq_len(k)) {
                if (i == 1) { next() }
                infcells <- which(apply(probs, 2, function(x) {
                    bad <- FALSE
                    if (all(is.infinite(x))) {
                        bad <- TRUE
                    }
                    return(bad)
                }))
                if (i == k) {
                    probs[i, infcells] <- log(1)/log(logtype)
                } else {
                    probs[i, infcells] <-
                        log(samplefun(length(infcells),
                                      c(1-1/k, 1/k)))/log(logtype)
                }
            }
        }
    }
    return(probs)
}
#' @noRd
random_probs2 <- function(k, data, full = FALSE, logtype = 2) {
    samplefun <- function(n,p) {
        x <- sample(c(0.5,1.5), n,
                    replace = TRUE,
                    prob = p)

        return(x)
    }
    probs <- matrix(0, k, ncol(data))
    for (i in seq_len(k)) {
        if (i == 1) {
            probs[i, ] <- samplefun(ncol(data), c(1-1/k,1/k))
        } else {
            probs[i, which(probs[i-1, ] == 0)] <-
                samplefun(sum(probs[i-1, ] == 0), c(1-1/(k+1-i),1/(k+1-i)))
        }
    }
    return(probs)
}
#' @noRd
sortAdj <- function(res, list = FALSE) {
    resmat <- NULL
    for (i in seq_len(length(res))) {
        if (list) {
            resmat <-
                rbind(resmat,
                      as.vector(mytc(res[[i]])))
        } else {
            resmat <-
                rbind(resmat,
                      as.vector(mytc(res[[i]]$adj)))
        }
    }
    d <- as.matrix(dist(resmat))
    dsum <- apply(d, 1, sum)
    resorder <- which.max(dsum)
    d[resorder, resorder] <- Inf
    for (i in 2:length(dsum)) {
        resorder <- c(resorder, which.min(d[, resorder[length(resorder)]]))
        d[resorder, resorder] <- Inf
    }
    res2 <- list()
    for (i in seq_len(length(res))) {
        res2[[i]] <- res[[resorder[i]]]
    }
    return(list(res = res2, order = resorder))
}
#' @noRd
calcEvopen <- function(res, list = TRUE) {
    evopen <- 0
    for (i in seq_len(length(res)-1)) {
        if (list) {
            evopen <- evopen + sum(abs(res[[i]] -
                                           res[[(i+1)]]))/length(res[[i]])
        } else {
            evopen <- evopen + sum(abs(res[[i]]$adj -
                                           res[[(i+1)]]$adj))/length(res[[i]]$adj)
        }
    }
    evopen <- -evopen#/(k-1)
    return(evopen)
}
#' @noRd
transProb <- function(x, y, lambda = 0.5) {
    n <- nrow(x)
    exp <- sum(abs(x-y))
    enum <- lambda*(1-lambda)^(exp-1)
    denom <- 0
    ne <- (n*(n-1))
    for (i in 0:ne) {
        denom <- denom + choose(ne, i)*lambda*(1-lambda)^(i-1)
    }
    p <- enum/denom
    return(p)
}
#' @noRd
fullTransProb <- function(x, ...) {
    p <- 1
    for (i in seq_len(length(x)-1)) {
        p <- p*transProb(x[[i]], x[[i+1]], ...)
    }
    return(p)
}
#' @noRd
modAdj <- function(adj, D) {
    Sgenes <- getSgenes(D)
    SgeneN <- getSgeneN(D)
    for (i in seq_len(SgeneN)) {
        colnames(adj) <- rownames(adj) <- gsub(i, Sgenes[i], colnames(adj))
    }
    return(adj)
}
#' @noRd
getRho <- function(data) {

    Sgenes <- getSgenes(data)

    Rho <- matrix(0, length(Sgenes), ncol(data))

    for (i in seq_len(length(Sgenes))) {
        Rho[i, grep(paste0("^", Sgenes[i], "_|_", Sgenes[i],
                           "$|_", Sgenes[i], "_|^", Sgenes[i], "$"),
                    colnames(data))] <- 1
    }

    rownames(Rho) <- Sgenes
    colnames(Rho) <- colnames(data)
    Rho <- Rho[naturalsort(rownames(Rho)), ]
    return(Rho)
}
#' @noRd
initComps <- function(data, k=2, starts=1, verbose = FALSE, meanet = NULL,
                      linets = TRUE) {
    n <- getSgeneN(data)
    init <- list()
    for (i in seq_len(starts)) {
        init[[i]] <- list()
        for (j in seq_len(k)) {
            if (linets) {
                tmp <- matrix(0, n, n)
                tmp[upper.tri(tmp)] <- 1
                diag(tmp) <- 1
                rownames(tmp) <- colnames(tmp) <- sample(seq_len(n), n)
                tmp <- tmp[naturalorder(rownames(tmp)),
                           naturalorder(colnames(tmp))]
            } else {
                tmp <- sampleRndNetwork(seq_len(n), DAG = TRUE)
            }
            init[[i]][[j]] <- tmp
        }
    }
    return(init)
}
#' @noRd
initps <- function(data, ks, k,
                   starts = 3,
                   ksel = c("kmeans", "silhouette", "manhattan")) {
    clusters <- list()
    multi <- grep("_", colnames(data))
    if (length(multi) > 0) {
        data2 <- data[, -multi]
    } else {
        data2 <- data
    }
    for (i in seq_len(length(unique(colnames(data2))))) {
        if ("cor" %in% ksel) {
            d <- (1 - cor(data[, which(colnames(data) %in% i)]))/2
            d <- as.dist(d)
        } else {
            d <- dist(t(data[, which(colnames(data) %in% i)]),
                      method = ksel[3])
        }
        if (length(d) > 1) {
            hc <- hclust(d)
            clusters[[i]] <- cutree(hc, min(ks[i], length(hc$labels)))
        } else {
            clusters[[i]] <- 1
        }
    }
    probscl <- list()

    n <- getSgeneN(data)

    count <- 0
    llstr <- NULL
    resstr <- NULL
    counter <- 0
    takes <- NULL
    takesdone <- NULL
    while(count < starts & counter < prod(ks)) {
        counter <- counter + 1
        tmp <- matrix(0.5, k, ncol(data))
        if (ks[1] < k) {
            takes <- as.matrix(sample(seq_len(ks[1]), k, replace = TRUE), k, 1)
        } else {
            takes <- as.matrix(sample(seq_len(ks[1]), k), k, 1)
        }
        for (i in 2:length(unique(colnames(data)))) {
            if (ks[i] < k) {
                takes <- cbind(takes, sample(seq_len(ks[i]), k, replace = TRUE))
            } else {
                takes <- cbind(takes, sample(seq_len(ks[i]), k))
            }
        }
        for (i in seq_len(k)) {
            for (j in seq_len(n)) {
                tmp[i, which(colnames(data) == j)[
                    which(clusters[[j]] == takes[i, j])]] <- 1.5
            }
        }
        takestmp <- paste(takes, collapse = "")
        if (!(takestmp %in% takesdone)) {
            count <- count + 1
            takesdone <- c(takesdone, takestmp)
            probscl[[count]] <- log2(tmp)
        }
    }
    return(probscl)
}
#' @noRd
modData <- function(D) {
    SgeneN <- getSgeneN(D)
    Sgenes <- getSgenes(D)
    if (!all(is.numeric(Sgenes))) {
        colnamesD <- colnames(D)
        for (i in seq_len(SgeneN)) {
            colnamesD <- gsub(paste0("^", Sgenes[i], "$"), i, colnamesD)
            colnamesD <- gsub(paste0("_", Sgenes[i], "$"),
                              paste0("_", i), colnamesD)
            colnamesD <- gsub(paste0("^", Sgenes[i], "_"),
                              paste0(i, "_"), colnamesD)
            colnamesD <- gsub(paste0("_", Sgenes[i], "_"),
                              paste0("_", i, "_"), colnamesD)
        }
        colnames(D) <- colnamesD
    }
    rownames(D) <- as.numeric(seq_len(nrow(D)))
    return(D)
}
#' @noRd
#' @importFrom cluster silhouette
#' @importFrom stats kmeans
learnk <- function(data, kmax = 10, ksel = c("hc", "silhouette", "cor"),
                   starts = 10, mono = TRUE, verbose = FALSE) {
    ks <- numeric(length(unique(colnames(data))))
    lab <- list()
    index <- numeric(ncol(data))
    for (i in naturalsort(as.numeric(unique(colnames(data))))) {
        if (verbose) {
            print(i)
        }
        if (sum(colnames(data) %in% i) <= 1) { k <- 1; next() }
        if ("cor" %in% ksel) {
            d <- (1 - cor(data[, which(colnames(data) %in% i)]))/2
            d <- as.dist(d)
        } else {
            d <- dist(t(data[, which(colnames(data) %in% i)]),
                      method=ksel[3])
        }
        if ("hc" %in% ksel) {
            hc <- hclust(d)
            ks[i] <- 2
            lab[[i]] <- rep(1, sum(colnames(data) %in% i))
            if (length(d) > 1) {
                silavg <- 0
                silavgs <- numeric(length(hc$order)-1)
                clusters <- list()
                for (j in 2:(length(hc$order)-1)) {
                    cluster <- cutree(hc, j)
                    clusters[[j]] <- cluster
                    if ("BIC" %in% ksel | "AIC" %in% ksel) {
                        m <- nrow(data)
                        n <- length(cluster)
                        k <- length(table(cluster))
                        D <- log(mean(silhouette(cluster, d)[, 3]))
                        if ("AIC" %in% ksel) {
                            silavgs[j] <- 2*m*k - 2*D
                        } else {
                            silavgs[j] <- log(n)*m*k - 2*D
                        }
                    }
                    if ("silhouette" %in% ksel) {
                        silavgs[j] <- mean(silhouette(cluster, d)[, 3])
                    }
                    if (verbose) {
                        print(silavgs[j])
                    }
                    if (silavgs[j] < silavgs[(j-1)]) {
                        break()
                    }
                    if (silavg < silavgs[j]) {
                        silavg <- silavgs[j]
                        ks[i] <- j
                        lab[[i]] <- cluster
                    }
                }
            }
            index[which(colnames(data) %in% i)] <- lab[[i]]
        }
        if ("kmeans" %in% ksel) {
            silavg <- 0
            silavgs <- numeric(kmax)
            clusters <- list()
            for (j in seq_len(kmax)) {
                if (j == 1) { next() }
                if (ncol(as.matrix(d)) <= j) { next() }
                kc <- kmeans(d, centers = j, nstart = starts)
                if ("BIC" %in% ksel | "AIC" %in% ksel) {
                    m <- ncol(kc$centers)
                    n <- length(kc$cluster)
                    k <- nrow(kc$centers)
                    D <- kc$tot.withinss
                    if ("AIC" %in% ksel) {
                        silavgs[j] <- 2*m*k + D
                    } else {
                        silavgs[j] <- log(n)*m*k + D
                    }
                }
                if ("silhouette" %in% ksel) {
                    silavgs[j] <- mean(silhouette(kc$cluster, d)[, 3])
                }
                if (verbose) {
                    print(silavgs[j])
                }
                if (j == 1) {
                    j2 <- j
                } else {
                    j2 <- j - 1
                }
                if (silavgs[j] < silavgs[j] & mono) {
                    break()
                }
                if (silavg < silavgs[j]) {
                    silavg <- silavgs[j]
                    ks[i] <- j
                    lab[[i]] <- kc$cluster
                }
            }
            index[which(colnames(data) %in% i)] <- lab[[i]]
        }
    }
    k <- min(kmax, max(ks))
    return(list(ks = ks, k = k, lab = lab, cluster = index))
}
#' @noRd
getLL <- function(x, logtype = 2, mw = NULL, data = NULL, complete = FALSE) {
    if (is.null(mw)) { mw = rep(1, nrow(x))/nrow(x) }
    if (complete) {
        Z <- getAffinity(x, logtype = logtype, mw = mw, data = data,
                         complete = complete)
        l <- sum(apply(Z*(x + log(mw)/log(logtype)), 2, sum))
    } else {
        x <- logtype^x
        x <- x*mw
        l <- sum(log(rep(1,nrow(x))%*%x)/log(logtype))
    }
    return(l)
}
#' @noRd
estimateSubtopo <- function(data, fun = which.max) {
    if (length(grep("_", colnames(data))) > 0) {
        data <- data[, -grep("_", colnames(data))]
    }
    effectsums <- effectsds <- matrix(0, nrow(data),
                                      length(unique(colnames(data))))
    n <- getSgeneN(data)
    for (i in seq_len(n)) {
        ilen <- length(grep(i, colnames(data)))
        if (ilen > 1) {
            effectsds[, i] <- apply(data[, grep(i, colnames(data))], 1, sd)
            effectsums[, i] <- apply(data[, grep(i, colnames(data))], 1, sum)
        } else if (ilen == 1) {
            effectsds[, i] <- 1
            effectsums[, i] <- data[, grep(i, colnames(data))]
        }
    }
    subtopoX <- as.numeric(apply(effectsums/effectsds, 1, fun))
    subtopoX[which(is.na(subtopoX) == TRUE)] <- 1
    return(subtopoX)
}
#' @noRd
getProbs <- function(probs, k, data, res, method = "llr", affinity = 0,
                     converged = 10^-2, subtopoX = NULL, ratio = TRUE,
                     logtype = 2, mw = NULL, fpfn = fpfn, Rho = NULL,
                     complete = FALSE, nullcomp = FALSE, marginal = FALSE) {
    n <- ncol(res[[1]]$adj)
    bestprobs <- probsold <- probs
    time0 <- TRUE
    count <- 0
    if (ncol(data) <= 100) {
        max_count <- 100
    } else {
        max_count <- 10
    }
    ll0 <- llold <- -Inf
    stop <- FALSE
    mw <- apply(getAffinity(probsold, affinity = affinity, norm = TRUE,
                            mw = mw, logtype = logtype, data = data,
                            complete = complete), 1, sum)
    mw <- mw/sum(mw)
    if (any(is.na(mw))) { mw <- rep(1, k)/k }
    while((!stop | time0) & count < max_count) {
        time0 <- FALSE
        probsold <- probs
        subtopo0 <- matrix(0, k, nrow(data))
        subweights0 <- matrix(0, nrow(data), n+1)
        postprobsold <- getAffinity(probsold, affinity = affinity, norm = TRUE,
                                    logtype = logtype, mw = mw, data = data,
                                    complete = complete)
        probs0 <- probsold*0
        eprobs <- matrix(0, k, nrow(data))
        for (i in seq_len(k)) {
            if (i == k & nullcomp) {
                tmp <- tmp2 <- 0
            } else {
                adj1 <- mytc(res[[i]]$adj)
                if (is.null(Rho)) {
                    adj1 <- adj1[colnames(data), ]
                } else {
                    adj1 <- t(Rho)%*%adj1
                    adj1[which(adj1 > 1)] <- 1
                }
                adj1 <- cbind(adj1, "0" = 0)
                if (is.null(res[[i]]$subtopo)) {
                    subtopo <- maxCol_row(t(t(data)*postprobsold[i, ])%*%adj1)
                } else {
                    subtopo <- res[[i]]$subtopo
                    subtopo[which(subtopo == 0)] <- ncol(adj1)
                }
                adj2 <- adj1[, subtopo]
                if (marginal) {
                    tmp2 <- llrScore(data, adj1, ratio = ratio)
                    tmp2 <- logtype^tmp2
                    tmp2 <- log(rowSums(tmp2))/log(logtype)
                }
                if (method %in% "llr") {
                    tmp <- colSums(data*t(adj2))
                }
            }
            probs0[i, ] <- tmp
            if (marginal) {
                eprobs[i, ] <- tmp2
            }
        }
        if (marginal) {
            ll0 <- getLL(eprobs, logtype = logtype, mw = mw,
                         data = data, complete = complete)
        } else {
            ll0 <- getLL(probs0, logtype = logtype, mw = mw,
                         data = data, complete = complete)
        }
        if (max(ll0) - llold > 0) {
            bestprobs <- probs0
        }
        probs <- probs0
        if (max(ll0) - llold <= converged) {
            stop <- TRUE
        }
        mw <- apply(getAffinity(probs, affinity = affinity, norm = TRUE,
                                logtype = logtype, mw = mw, data = data,
                                complete = complete), 1,
                    sum)
        mw <- mw/sum(mw)
        llold <- max(ll0)
        count <- count + 1
    }
    return(list(probs = bestprobs, subtopoX = subtopoX,
                mw = mw, ll = llold))
}
#' @noRd
annotAdj <- function(adj, data) {
    Sgenes <- getSgenes(data)
    colnames(adj) <- rownames(adj) <- naturalsort(Sgenes)
    return(adj)
}
#' @noRd
nemEst2 <- function(data, maxiter = 100, start = "null",
                   cut = 0, monoton = TRUE, logtype = 2,
                   method = "llr",
                   weights = NULL, fpfn = c(0.1, 0.1), Rho = NULL,
                   close = TRUE, domean = TRUE, modified = FALSE,
                   hierarchy = "totaleffect", tree = TRUE, cutlen = 100,
                   ...) {
    if (method %in% "disc") {
        D <- data
        D[which(D == 1)] <- log((1-fpfn[2])/fpfn[1])/log(logtype)
        D[which(D == 0)] <- log(fpfn[2]/(1-fpfn[1]))/log(logtype)
        method <- "llr"
        data <- D
    }
    if (!modified) {
        data <- modData(data)
    }
    if (sum(duplicated(colnames(data)) == TRUE) > 0 &
        method %in% "llr" & domean) {
        if (!is.null(weights)) {
            D <- data
            data <- data*rep(weights, rep(nrow(data), ncol(data)))
        }
        data2 <- doMean(data, weights = weights, Rho = Rho, logtype = logtype)
        data <- D
    } else {
        data2 <- data
    }
    if (is.null(weights)) { weights <- rep(1, ncol(data2)) }
    R <- data2[, naturalsort(colnames(data2))]
    Rho <- diag(ncol(R))
    Sgenes <- getSgenes(R)
    phi <- matrix(0, n, n)
    rownames(phi) <- colnames(phi) <- Sgenes
    R2 <- t(R)%*%R
    R2 <- R2 + diag(R2)
    E <- apply(R, 2, sum)
    E <- phi[order(E, decreasing=TRUE), order(E, decreasing=TRUE)]
    E[upper.tri(E)] <- 1
    E <- E[naturalsort(rownames(E)), naturalsort(colnames(E))]
    llmax <- -Inf
    lls <- NULL
    for (cut in c(0,seq(min(R2),max(R2),length.out=cutlen))) {
        phi[R2 > cut] <- 1
        phi[R2 <= cut] <- 0
        ll <- scoreAdj(R, phi, weights = weights, dotopo = TRUE,
                       trans.close = close, Rho = Rho)
        theta <- theta2theta(ll$subtopo, phi)
        lls <- c(lls,ll)
        if (ll > llmax) {
            phibest <- phi
            thetabest <- theta
            llmax <- ll
        }
    }
    nem <- list(phi = phibest, theta = thetabest, iter = cutlen,
                ll = llbest, lls = lls, num = which.max(lls),
                O = E, E = E, phintc = phi)
    class(nem) <- "nemEst"
    return(nem)
}
#' @noRd
nemEst <- function(data, maxiter = 100, start = "null",
                    cut = 0, monoton = TRUE, logtype = 2,
                    method = "llr",
                    weights = NULL, fpfn = c(0.1, 0.1), Rho = NULL,
                    close = TRUE, domean = TRUE, modified = FALSE,
                    hierarchy = "totaleffect", tree = TRUE, ...) {
    if (method %in% "disc") {
        D <- data
        D[which(D == 1)] <- log((1-fpfn[2])/fpfn[1])/log(logtype)
        D[which(D == 0)] <- log(fpfn[2]/(1-fpfn[1]))/log(logtype)
        method <- "llr"
        data <- D
    }
    if (!modified) {
        data <- modData(data)
    }
    if (sum(duplicated(colnames(data)) == TRUE) > 0 &
        method %in% "llr" & domean) {
        if (!is.null(weights)) {
            D <- data
            data <- data*rep(weights, rep(nrow(data), ncol(data)))
        }
        data2 <- doMean(data, weights = weights, Rho = Rho, logtype = logtype)
        data <- D
    } else {
        data2 <- data
    }
    if (is.null(weights)) { weights <- rep(1, ncol(data2)) }
    R <- data2[, naturalsort(colnames(data2))]
    Rho <- diag(ncol(R))
    N <- rowSums(Rho)
    n <- getSgeneN(R)
    phibest <- phi <- matrix(0, n, n)
    Sgenes <- getSgenes(R)
    rownames(phi) <- colnames(phi) <- Sgenes
    if (hierarchy == "totaleffect") {
        E0 <- apply(t(t(R%*%t(Rho))/N), 2, sum)
        phi <- phi[order(E0, decreasing = TRUE), order(E0, decreasing = TRUE)]
        phi[upper.tri(phi)] <- 1
        phi <- phi[naturalsort(rownames(phi)), naturalsort(colnames(phi))]
        E <- phi
    } else if (hierarchy == "pairwise.greedy") {
        for (i in seq_len(n-1)) {
            for (j in (i+1):n) {
                pwg <- nem(R[, c(i,j)], logtype = logtype,
                           weights = weights[c(i,j)], trans.close = close,
                           domean = FALSE)
                phi[i, j] <- pwg$adj[1, 2]
                phi[j, i] <- pwg$adj[2, 1]
            }
        }
        E0 <- E <- phi
    } else {
        Rpos <- t(t(R%*%t(Rho))/N)
        Rpos[which(Rpos < 0)] <- 0
        E0 <- t(Rpos)%*%(R%*%t(Rho))
        E <- E0  - t(E0)
        parents <- which(E <= 0)
        children <- which(E > 0)
        E[parents] <- 1
        E[children] <- 0
        E <- E[naturalorder(rownames(E)), naturalorder(colnames(E))]
        phi <- phi[naturalsort(rownames(phi)), naturalsort(colnames(phi))]
    }
    if ("full" %in% start) {
        phi <- phi
        diag(phi) <- 1
    } else if ("rand" %in% start) {
        phi <- phi*0
        diag(phi) <- 1
        phi[seq_len(length(phi))] <- sample(c(0,1), length(phi), replace = TRUE)
        phi[lower.tri(phi)] <- 0
        phi <- phi[sample(seq_len(nrow(phi)), nrow(phi)),
                   sample(seq_len(nrow(phi)), nrow(phi))]
        phi <- phi[naturalsort(rownames(phi)), naturalsort(colnames(phi))]
    } else if ("null" %in% start) {
        phi <- phi*0
        diag(phi) <- 1
    } else {
        phi <- start
    }
    O <- phi*0
    iter <- Oold <- 0
    lls <- NULL
    llbest <- -Inf
    stop <- FALSE
    while(!stop & iter < maxiter) {
        iter <- iter + 1
        ll <- scoreAdj(R, phi,
                       weights = weights, dotopo = TRUE,
                       trans.close = close, Rho = Rho)
        P <- ll$subweights
        theta <- theta2theta(ll$subtopo, phi)
        ll <- ll$score
        Oold <- O
        if (ll %in% lls | all(phi == phibest)) {
            stop <- TRUE
        }
        if (monoton & iter > 1) {
            if (ll < lls[length(lls)]) { stop <- TRUE }
        }
        if (llbest < ll) {
            phibest <- phi
            thetabest <- theta
            llbest <- ll
            numbest <- iter
            Obest <- O
        }
        lls <- c(lls, ll)
        nogenes <- which(apply(theta, 1, sum) == 0)
        nozeros <- which(t(P) > 0, arr.ind = TRUE)
        nozeros <- nozeros[which(nozeros[, 1] %in% nogenes), ]
        theta[nozeros] <- 1
        O <- (t(R%*%t(Rho))*weights)%*%t(theta)
        cutoff <- cut*max(abs(O))
        phi[which(O > cutoff & E == 1)] <- 1
        phi[which(O <= cutoff | E == 0)] <- 0
        if (close) {
            phi <- mytc(phi)
        }
    }
    phintc <- phibest
    if (close) {
        phibest <- mytc(phibest)
    }
    ll <- scoreAdj(R, phibest,
                   weights = weights, dotopo = TRUE,
                   trans.close = close, Rho = Rho)
    P <- ll$subweights
    theta <- theta2theta(ll$subtopo, phibest)
    llbest <- ll$score
    nem <- list(phi = phibest, theta = thetabest, iter = iter,
                ll = llbest, lls = lls, num = numbest,
                O = Obest, E = E0, phintc = phintc)
    class(nem) <- "nemEst"
    return(nem)
}
#' @noRd
doMean <- function(D, weights = NULL, Rho = NULL, logtype = 2) {
    man <- FALSE
    if (man) {
        mD <- matrix(0, nrow(D), length(unique(colnames(D))))
        if (!is.null(weights)) {
            doodds <- FALSE
            if (doodds) {
                A <- exp(D)/(1+exp(D))
                D <- log(t(t(A)*weights +
                               (1-weights)*0.5)/t(t(1 - A)*weights +
                                                      (1-weights)*0.5))/log(logtype)
            } else {
                D <- D*rep(weights, rep(nrow(D), ncol(D)))
            }
        }
        for (i in seq_len(length(unique(colnames(D))))) {
            mD[, i] <-
                apply(D[, which(colnames(D) %in% unique(colnames(D))[i]),
                        drop = FALSE], 1, mean)
        }
        colnames(mD) <- unique(colnames(D))
    } else {
        if (!is.null(weights)) {
            D <- D*rep(weights, rep(nrow(D), ncol(D)))
        }
        if (!is.null(Rho)) {
            Rho <- apply(Rho, 2, function(x) {
                if (sum(x) > 1) {
                    x <- x/sum(x)
                }
                return(x)
            })
            Rho[is.na(Rho)] <- 0
            mD <- D%*%t(Rho)
            mD <- mD[, naturalorder(colnames(mD))]
            colnames(mD) <- seq_len(ncol(mD))
        } else {
            global <- TRUE
            if (global) {
                mD <- t(rowsum(t(D), colnames(D)))/
                    (ncol(D)/length(unique(colnames(D))))
            } else {
                mD <- t(rowsum(t(D), colnames(D))/
                            as.numeric(table(colnames(D))))
            }
        }
    }
    mD <- mD[, naturalorder(colnames(mD))]
    return(mD)
}
#' @noRd
modules <- function(D, method = "llr", weights = NULL, reduce = FALSE,
                    start = NULL,
                    verbose = FALSE, trans.close = TRUE, redSpace = NULL,
                    subtopo = NULL, ratio = TRUE, parallel = NULL,
                    prior = NULL, fpfn = c(0.1, 0.1),
                    modulesize = 4, search = "exhaustive", domean = TRUE,
                    Rho = NULL, logtype = 2) {
    D <- data <- modData(D)
    n <- getSgeneN(D)
    Sgenes <- getSgenes(D)
    if (domean) {
        D <- doMean(D, weights = weights, Rho = Rho, logtype = logtype)
        weights <- rep(1, ncol(D))
        sumdata <- data <- D
    } else {
        sumdata <- matrix(0, nrow(data), n)
        if (!is.null(weights)) {
            D <- D*rep(weights, rep(nrow(D), ncol(D)))
            weights <- rep(1, ncol(sumdata))
        }
        for (i in seq_len(n)) {
            sumdata[, i] <-
                apply(D[, which(colnames(D) %in% i), drop = FALSE], 1, sum)
        }
        colnames(sumdata) <- seq_len(n)
        rownames(sumdata) <- rownames(D)
    }
    D <- NULL
    n <- getSgeneN(data)
    cordata <- cor(sumdata)
    cordata[is.na(cordata)] <- -1
    d <- as.dist((1 - cordata)/2)
    for (i in 2:n) {
        hc <- hclust(d)
        hcut <- cutree(hc, i)
        if (max(table(hcut)) <= modulesize) {
            break()
        }
    }
    groups <- table(hcut)
    fullnet <- NULL
    for (i in seq_len(length(groups))) {
        subset <- which(hcut == i)
        if (verbose) {
            print(paste(c("calculating module", subset), collapse = " "))
        }
        if (length(subset) > 1) {
            subdata <- data[, which(colnames(data) %in% subset)]
            if (is.null(start)) {
                start2 <- start
            } else {
                start2 <- start[which(rownames(start) %in% subset),
                                which(colnames(start) %in% subset)]
            }
            if (!is.null(Rho)) { Rho <- getRho(subdata) }
            tmp <- nem(subdata, search = search, method = method,
                       start = start2,
                       parallel = parallel, reduce = reduce,
                       weights = weights[which(colnames(data) %in% subset)],
                       verbose = verbose,
                       redSpace = redSpace, trans.close = trans.close,
                       subtopo = subtopo, prior = prior, ratio = ratio,
                       domean = FALSE, fpfn = fpfn, Rho = Rho,
                       logtype = logtype)
            if (is.null(fullnet)) {
                fullnet <- tmp$adj
            } else {
                tmpnames <- c(colnames(fullnet), colnames(tmp$adj))
                fullnet <-
                    rbind(cbind(fullnet,
                                matrix(0, nrow(fullnet), ncol(tmp$adj))),
                          cbind(matrix(0, nrow(tmp$adj), ncol(fullnet)),
                                tmp$adj))
                colnames(fullnet) <- rownames(fullnet) <- as.numeric(tmpnames)
            }
        } else {
            if (is.null(dim(fullnet))) {
                fullnet <- matrix(1, 1, 1)
                colnames(fullnet) <- rownames(fullnet) <- subset
            } else {
                fullnet <- rbind(cbind(fullnet, 0), 0)
                colnames(fullnet)[ncol(fullnet)] <-
                    rownames(fullnet)[nrow(fullnet)] <-
                    subset
            }
        }
    }
    fullnet <- transitive.reduction(fullnet)
    fullnet <- fullnet[order(as.numeric(rownames(fullnet))),
                       order(as.numeric(colnames(fullnet)))]
    return(fullnet)
}
#' @noRd
getSgeneN <- function(data) {
    Sgenes <- length(unique(unlist(strsplit(colnames(data), "_"))))
    return(Sgenes)
}
#' @noRd
getSgenes <- function(data) {
    Sgenes <- naturalsort(unique(unlist(strsplit(colnames(data), "_"))))
    return(Sgenes)
}
#' @noRd
get.rev.tc <-function (Phi) {
    Phitr <- transitive.reduction(Phi)
    idx = which(Phitr + t(Phitr) == 1, arr.ind = TRUE)
    models = list()
    nn <- dim(Phi)
    if (NROW(idx) > 0) {
        for (i in seq_len(NROW(idx))) {
            Phinew = Phi
            Phinew[idx[i, 1], idx[i, 2]] = 1 - Phinew[idx[i, 1], idx[i, 2]]
            Phinew[idx[i, 2], idx[i, 1]] = 1 - Phinew[idx[i, 2], idx[i, 1]]
            diag(Phinew) = 1
            if (Phinew[idx[i, 1], idx[i, 2]] == 1) {
                uv <- idx[i, ]
            } else {
                uv <- rev(idx[i, ])
            }
            Phinew <- mytc(Phinew, uv[1], uv[2])
            models[[i]] <- Phinew
        }
    }
    models
}
#' @noRd
get.ins.fast <- function (Phi, trans.close = TRUE, tree = FALSE) {
    idx = which(Phi == 0)
    models = list()
    nn <- dim(Phi)
    if (length(idx) > 0) {
        for (i in seq_len(length(idx))) {
            uv <- arrayInd(idx[i], nn)
            Phinew = Phi
            Phinew[idx[i]] = 1
            if (trans.close) {
                Phinew = mytc(Phinew, uv[1], uv[2])
            }
            if (!tree | all(colSums(transitive.reduction(Phinew))<=1)) {
                models[[i]] <- Phinew
            } else {
                models[[i]] <- Phi
            }
        }
    }
    models
}
#' @noRd
get.del.tc <- function (Phi) {
    Phi = Phi - diag(ncol(Phi))
    Phi2 <- transitive.reduction(Phi)
    idx = which(Phi2 == 1)
    models = list()
    if (length(idx) > 0) {
        for (i in seq_len(length(idx))) {
            Phinew = Phi
            Phinew[idx[i]] = 0
            diag(Phinew) = 1
            models[[i]] <- Phinew
        }
    }
    models
}
#' @noRd
theta2theta <- function(x, y) {
    if (is.matrix(x)) {
        z <- apply(x, 2, function(x) {
            if (max(x) == 0) {
                y <- 0
            } else {
                y <- which.max(x)
            }
            return(y)
        })
    } else {
        z <- matrix(0, nrow(y), length(x))
        z[cbind(x, seq_len(ncol(z)))] <- 1
        rownames(z) <- seq_len(nrow(z))
        colnames(z) <- seq_len(ncol(z))
    }
    return(z)
}
#' @noRd
adj2dnf <- function(A) {

    dnf <- NULL

    for (i in seq_len(ncol(A))) {
        for (j in seq_len(nrow(A))) {
            if (A[i, j] > 0) {
                dnf <- c(dnf, paste(colnames(A)[i], rownames(A)[j], sep = "="))
            }
            if (A[i, j] < 0) {
                dnf <- c(dnf, paste("!", colnames(A)[i], "=",
                                    rownames(A)[j], sep = ""))
            }
        }
    }

    dnf <- unique(dnf)

    return(dnf)

}
#' @noRd
#' @importFrom methods new
plot.adj <- function(x, ...) {
    adj2graph <- function(adj.matrix) {
        V   <- rownames(adj.matrix)
        edL <- vector("list", length=nrow(adj.matrix))
        names(edL) <- V
        for (i in seq_len(nrow(adj.matrix))) {
            edL[[i]] <- list(edges=which(!adj.matrix[i,]==0),
                             weights=adj.matrix[i,!adj.matrix[i,]==0])
        }
        gR <- new("graphNEL",nodes=V,edgeL=edL,edgemode="directed")
        return(gR)
    }
    g <- adj2graph(x)
    plot(g)
}
#' @noRd
graph2adj <- function(gR) {
    adj.matrix <- matrix(0,
                         length(nodes(gR)),
                         length(nodes(gR))
    )
    rownames(adj.matrix) <- nodes(gR)
    colnames(adj.matrix) <- nodes(gR)
    for (i in seq_len(length(nodes(gR)))) {
        adj.matrix[nodes(gR)[i],adj(gR,nodes(gR)[i])[[1]]] <- 1
    }
    return(adj.matrix)
}
#' @noRd
#' @importFrom flexclust dist2
#' @import Rcpp
#' @import RcppEigen
llrScore <- function(data, adj, weights = NULL, ratio = TRUE) {
    if (is.null(weights)) {
        weights <- rep(1, ncol(data))
    }
    if (ratio) {
        score <- eigenMapMatMult(data, adj*weights)
    } else {
        if (max(data) == 1) {
            score <- -dist2(data, t(adj)*weights)
        } else {
            score <- -dist2(data, t((adj*mean(data))*weights))
        }
    }
    return(score)
}
#' @noRd
adj2dnf <- function(A) {
    dnf <- NULL
    for (i in seq_len(ncol(A))) {
        dnf <- c(dnf, rownames(A))
        for (j in seq_len(nrow(A))) {
            if (A[i, j] == 1) {
                dnf <- c(dnf, paste(colnames(A)[i], rownames(A)[j], sep = "="))
            }
            if (A[i, j] == -1) {
                dnf <- c(dnf, paste("!", colnames(A)[i], "=", rownames(A)[j],
                                    sep = ""))
            }
        }
    }

    dnf <- unique(dnf)

    return(dnf)

}
#' @noRd
#' @useDynLib mnem
#' @importFrom Rcpp sourceCpp
mytc <- function(x, u = NULL, v = NULL) {
    diag(x) <- 1
    if (is.null(u) | is.null(v)) {
        y <- matrix(transClose_W(x), nrow(x), ncol(x))
    } else {
        if (x[u,v] == 1) {
            y <- matrix(transClose_Ins(x, u, v), nrow(x), ncol(x))
        }
        if (x[u,v] == 0) {
            y <- matrix(transClose_Del(x, u, v), nrow(x), ncol(x))
        }
    }
    y[which(y != 0)] <- 1
    rownames(y) <- rownames(x)
    colnames(y) <- colnames(x)
    return(y)
}
#' @noRd
simulateDnf <- function(dnf, stimuli = NULL, inhibitors = NULL) {
    getStateDnf <- function(node, signalStates, graph, children = NULL) {
        graphCut <- graph[grep(paste("=", node, "$", sep = ""), graph)]
        if (length(graphCut) == 0) {
            signalStates[, node] <- 0
        } else {
            sop <- numeric(nrow(signalStates))
            children2 <- gsub("!", "", children)
            for (i in graphCut) {
                parents <- gsub("=.*$", "", unlist(strsplit(i, "\\+")))
                pob <- rep(1, nrow(signalStates))
                for (j in parents) {
                    j2 <- gsub("!", "", j)
                    if (sum(is.na(signalStates[, j2]) == TRUE) ==
                        length(signalStates[, j2])) {
                        if (j %in% j2) {
                            node2 <- node
                            add1 <- 0
                        } else {
                            node2 <- paste("!", node, sep = "")
                            add1 <- 1
                        }
                        if (j2 %in% children2) {
                            subGraph <- graph[
                                -grep(paste(".*=", node, "|.*",
                                            j2, ".*=.*", sep = ""), graph)]
                            signalStatesTmp <- getStateDnf(
                                node = j2,
                                signalStates = signalStates,
                                graph = subGraph,
                                children = NULL)
                            ifa <- children[
                                which(children2 %in% j2):length(children2)]
                            ifb <- (length(grep("!", ifa)) + add1)/2
                            ifc <- children[
                                which(children2 %in% j2):length(children2)]
                            if (ifb != ceiling((length(grep("!", ifc)) +
                                                add1)/2)) {
                            } else {
                            }
                            if (add1 == 0) {
                                pobMult <- signalStatesTmp[, j2]
                            } else {
                                pobMult <- add1 - signalStatesTmp[, j2]
                            }
                        } else {
                            signalStates <-
                                getStateDnf(node = j2,
                                            signalStates = signalStates,
                                            graph = graph,
                                            children = unique(c(children,
                                                                node2)))
                            if (add1 == 0) {
                                pobMult <- signalStates[, j2]
                            } else {
                                pobMult <- add1 - signalStates[, j2]
                            }
                        }
                        pob <- pob*pobMult
                    } else {
                        if (j %in% j2) {
                            add1 <- 0
                        } else {
                            add1 <- 1
                        }
                        if (add1 == 0) {
                            pobMult <- signalStates[, j2]
                        } else {
                            pobMult <- add1 - signalStates[, j2]
                        }
                        pob <- pob*pobMult
                    }
                    if (max(pob, na.rm = TRUE) == 0) { break() }
                }
                sop <- sop + pob
                if (min(sop, na.rm = TRUE) > 0) { break() }
            }
            sop[sop > 0] <- 1
            if (node %in% inhibitors) {
                sop <- sop*0
            }
            if (node %in% stimuli) {
                sop <- max(sop, 1)
            }
            signalStates[, node] <- sop
        }
        return(signalStates)
    }
    signals <-
        unique(gsub("!", "",
                    unlist(strsplit(
                        unlist(strsplit(dnf, "=")), "\\+"))))
    graph <- dnf
    signalStates <- matrix(NA, nrow = 1, ncol = length(signals))
    rownames(signalStates) <- paste(c("stimuli:", stimuli, "inhibitors:",
                                      inhibitors), collapse = " ")
    colnames(signalStates) <- signals
    signalStates[which(signals %in% stimuli)] <- 1
    for (k in signals) {
        if (is.na(signalStates[, k]) == TRUE) {
            signalStates <- getStateDnf(node = k, signalStates = signalStates,
                                        graph = graph, children = NULL)
        }
    }
    namestmp <- colnames(signalStates)
    signalStates <- as.vector(signalStates)
    names(signalStates) <- namestmp
    return(signalStates = signalStates)
}
#' @noRd
dnf2adj <- function(dnf) {
    nodes <- unique(sort(unlist(strsplit(dnf,"="))))
    adj <- matrix(0,length(nodes),length(nodes))
    rownames(adj) <- colnames(adj) <- nodes
    for (i in dnf) {
        nodes <- unlist(strsplit(i,"="))
        adj[nodes[1],nodes[2]] <- adj[nodes[1],nodes[2]] + 1
    }
    return(adj)
}
#' @noRd
#' @importFrom graphics abline
addgrid <- function(x = c(0,1,0.1), y = c(0,1,0.1), lty = 2,
                    col = rgb(0.5,0.5,0.5,0.5)) {
    abline(h=seq(x[1], x[2], x[3]), col = col, lty = lty)
    abline(v=seq(y[1], y[2], y[3]), col = col, lty = lty)
}

#' MCMC function
#' @param Nems number of components for the mixture to be inferred
#' @param Sgenes number of Sgenes in the data set
#' @param data data matrix with non-unique column names (corresponding to
#'  the Sgenes) for the cells indexing the columns and the Egenes indexing
#'   the rows. The modData function is not applied within the MCMC function,
#'    but in the mnem function that wraps around it.
#' @param stop_counter number of iterations for algorithm runtime
#' @param burn_in number of iterations to be discarded prior to analyzing
#'  the posterior distribution
#' @param probs matrix with initial cell probabilities if available
#' @param starts how many times the MCMC is restarted for the same data
#'  set
#' @param Hastings if set to TRUE, the Hastings ratio is calculated
#' @param Initialize if set to "random", the initial Phi has edges added
#'  by sampling from a uniform distribution. If set to "empty", the initial
#'   Phi is empty
#' @param NodeSwitching if set to TRUE, node switching is allowed as a move,
#'  additional to the edge moves
#' @param EM_NEM if set to TRUE, the EM and NEM are each run 10 times to
#'  infer the network mixture and the resulting lilelihoods saved to compare
#'   them to the MCMC
#' @param post_gaps can be set to 1, 10 or 100. Determines after how many
#'  iterations the next Phi mixture is added to the Phi edge Frequency tracker
#' @param penalized if set to TRUE, the penalized likelihood will be used.
#'  Per default this is FALSE, since no component learning is involved and
#'   sparcity is hence not enforced
#' @param logtype log base of the data
#' @param marginal logical to compute the marginal likelihood (TRUE)
#' @param complete if TRUE, complete data log likelihood is considered (for
#' very large data sets, e.g. 1000 cells and 1000 E-genes)
#' @param accept_range the random probability the acceptance probability
#' is compared to (default: 1)
#' @author Viktoria Brunner
#' @noRd
#' @return object of class mcmc
MCMC <- function(Nems=2, Sgenes=5, data, stop_counter=30000, burn_in=10000,
                 probs=NULL, starts=3, Hastings=TRUE, Initialize="random",
                 phi = NULL, NodeSwitching=TRUE, EM_NEM=TRUE, post_gaps=10,
                 penalized=FALSE, logtype = 2, marginal = FALSE,
                 complete = FALSE, accept_range = 1){
    if (burn_in >= stop_counter) {
        burn_in <- floor(0.1*stop_counter)
    }
    if (!is.null(phi)) {
        Initialize <- 'prior'
        starts <- length(phi)
    }
    k <- Nems
    n <- Sgenes
    #initialize saving entities (outside loop)
    ll_track <- list()
    mw_track <- list()
    ll_best_timer_saved <- list()
    ll_best_vector_saved <- list()
    switch_counter_saved <- list()
    Phi_track_saved <- list()
    Phi_best_saved <- list()
    for (i in 1:starts){
        Phi_track_saved[[i]] <- list()
        Phi_best_saved[[i]] <- list()
    }
    run <- 0
    max.len <- 0
    for (s in 1:starts){
        if (!is.null(phi[[s]])) {
            k <- length(phi[[s]])
        }
        # set convergence criteria
        counter <- 0
        counter_accept <- 0
        stop <- FALSE
        ll_tracker <- mw_tracker <- rep(0,stop_counter)
        ll_time <- mw_time <- c(1:(length(ll_tracker)))
        ll_best_vector <- vector()
        ll_best_timer <- vector()
        accept <- FALSE
        run <- run+1
        accept_min <- seq(1,k,1)
        switch_counter <- vector()
        #Initialize mw as uniform and probs as empty if not given otherwise
        if (is.null(probs)){
            probs <- matrix(0, k, ncol(data))
        }
        mw_old <- rep(1/k, k)
        #Initialize Phi
        Topology <- list()
        for (i in 1:k){
            Topology[[i]] <- list()
            dimnames<-list(1:n,1:n)
            if (Initialize == 'networks'){
                tmp <- matrix(sample(0:1, n*n, replace=TRUE), n, n)
                rownames(tmp) <- colnames(tmp) <- sample(seq_len(n), n)
                tmp[lower.tri(tmp)] <- 0
                tmp <- tmp[naturalorder(rownames(tmp)),
                           naturalorder(rownames(tmp))]
                Topology[[i]]$adj <- tmp
            } else if (Initialize == 'empty') {
                Topology[[i]]$adj <- matrix(0, n , n, dimnames=dimnames)
            } else if (Initialize == 'prior') {
                Topology[[i]]$adj <- phi[[s]][[i]]
            }
            data1 <- t(t(data)*getAffinity(probs, mw = mw_old,
                                           complete = FALSE)[i,])
            P <- cbind(0,data1%*%t(getRho(data1))%*%transitive.closure(
                Topology[[i]]$adj))
            Topology[[i]]$subtopo <- max.col(P)-1
            thetarand <- TRUE
        }
        probs <- getProbs(probs, k=k, data=data, mw=mw_old, res=Topology,
                          complete = complete, marginal = marginal)
        ll_old <- ll_best <- probs$ll
        probs <- probs_best <- probs$probs
        #penalized ll
        if (penalized==TRUE){
            s <- 0
            for (i in 1:k){
                theta <- theta2theta(Topology[[i]]$subtopo,Topology[[i]]$adj)
                s <- s+sum(Topology[[i]]$adj)+sum(theta)+k-1
            }
            ll_old <- ll_best <- (log(n)*s)-2*(getLL(probs, mw=mw_old,
                                                     logtype=2,
                                                     complete = complete))
        }
        #initialize Phi
        Phi_best <- list()
        old_Phi <- list()
        norm_post <- list()
        for (i in 1:k){
            Phi_best[[i]] <- matrix(0, n , n, dimnames=dimnames)
        }
        #initialize Phi edge frequency trackers
        Phi_track <- Phi_track_N <- Phi_best
        #start MCMC
        while (!stop){
            accept <- FALSE
            #sample component to change
            which_k <- sample(1:k,1) # different distribution?
            #change Phi in component by edge reversal/ adding/ removing or node
            #switching
            Phi_new <- Topology[[which_k]]$adj
            #prevent cycle by calculating transitively closed of old matrix and
            #its inverse and omit them from edge sampling
            closed_Phi <- transitive.closure(Phi_new)
            closed_trans_Phi <- closed_Phi + t(closed_Phi)
            closed_trans_Phi[which(closed_trans_Phi != 0)] <- 1
            omit_edge <- which(closed_trans_Phi != Phi_new)
            omit_length <- length(Phi_new)-length(omit_edge)
            prob_vector <- rep(1/omit_length, length(Phi_new))
            prob_vector[omit_edge] <- 0
            #calulate move probabilities
            node_switch <- choose(n, 2)
            prob_switch <- node_switch/(node_switch + omit_length)
            action <- c("node","edge")
            do <- sample(action, size=1, prob=c(prob_switch, 1-prob_switch))
            #node switching
            if (do=="node" && NodeSwitching==TRUE){
                prob <- rep(1/node_switch, n)
                nodes <- seq(1, n, 1)
                do <- sample(nodes, size=2, prob=prob)
                Phi_new[c(do[1],do[2]),]  <- Phi_new[c(do[2],do[1]),]
                Phi_new[,c(do[1],do[2])]  <- Phi_new[,c(do[2],do[1])]
            }
            #edge sampling: sample edge w/o the omitted ones
            else{
                Phi_sample <- Phi_new
                names(Phi_sample) <- seq_along(Phi_sample)
                edge <- as.numeric(names(sample(x=Phi_sample, size=1,
                                                prob=prob_vector)))
                ##check for existing edge
                curr_edge <- Topology[[which_k]]$adj[edge]
                ##change respective edge in Phi
                if (curr_edge==0){
                    Phi_new[edge]<-1
                } else{
                    action<-sample(1:2,1)
                    if (action==1){
                        Phi_new[edge]<-0
                    } else{
                        Phi_new[edge]<-0
                        Phi_new<-t(Phi_new)
                        Phi_new[edge]<-1
                        Phi_new<-t(Phi_new)
                    }
                }
            }
            #calculate Hastings ratio if desired
            if (Hastings){
                if (NodeSwitching==FALSE) { node_switch <- 0 }
                hastings_X_Y <- 1/(omit_length+node_switch)
                closed_Phi <- transitive.closure(Phi_new)
                closed_trans_Phi <- closed_Phi + t(closed_Phi)
                closed_trans_Phi[which(closed_trans_Phi != 0)] <- 1
                omit_edge <- which(closed_trans_Phi != Phi_new)
                omit_length <- length(Phi_new)-length(omit_edge)
                hastings_Y_X <- 1/(omit_length+node_switch)
            }
            #insert Phi into new test list
            Topology_test <- Topology
            Topology_test[[which_k]]$adj <- Phi_new
            #Calculate MAP for Theta
            Theta<-list()
            for (i in 1:k){
                data1 <- t(t(data)*getAffinity(probs, mw = mw_old,
                                               complete = complete)[i,]) # daten R_k
                P <- cbind(0,data1%*%t(getRho(data1))%*%transitive.closure(
                    Topology_test[[i]]$adj))
                Theta[[i]] <- max.col(P)-1
                Topology_test[[i]]$subtopo <- Theta[[i]]
            }
            #Calculate new probabilities based on new Phi and Theta in test list
            probs_new <- getProbs(probs, k=k, data=data, res=Topology_test,
                                  mw = mw_old, complete = complete, marginal = marginal)
            #extract new mixture likelihood
            if (penalized==TRUE){
                s <- 0
                for (i in 1:k){
                    theta <- theta2theta(
                        Topology_test[[i]]$subtopo,Topology_test[[i]]$adj)
                    s<-s+sum(Topology_test[[i]]$adj)+sum(theta)+k-1
                }
                ll_new <- (log(n)*s)-2*(getLL(probs_new$probs, mw=mw_old,
                                              logtype=logtype,
                                              complete = complete))
            } else {
                ll_new <- probs_new$ll
            }
            #calculate metropolis ratio of mixture likelihood's
            Metr_ratio <- logtype^(ll_new - ll_old)
            if (Hastings){
                Hastings_ratio <- hastings_X_Y/hastings_Y_X
            } else{
                Hastings_ratio <- 1
            }
            #Set acceptance probability of new mixture
            Acceptance_prob <- min(Metr_ratio*Hastings_ratio, 1)
            #for penalized likelihood: (what is going on here?)
            if (penalized==TRUE){
                if (ll_new>0){
                    Acceptance_prob <- 0
                }
            }
            if (Acceptance_prob > (runif(1, 0, accept_range))){
                accept <- TRUE
                counter_accept <- counter_accept +1
                Topology <- Topology_test
                #test if new likelihood better than old
                if ((ll_new>ll_best&penalized==FALSE) |
                    (ll_new<ll_best&penalized==TRUE)) {
                    ll_best <- ll_new
                    ll_best_vector <- append(ll_best_vector, ll_new)
                    ll_best_timer <- append(ll_best_timer, counter)
                    #remember best Phi
                    for (i in 1:k){
                        Phi_best[[i]] <- Topology[[i]]$adj
                        old_Phi[[i]] <- Topology[[i]]$adj
                    }
                    probs_best <- probs_new
                } else {
                    #for Phi counter: remember old Phi for hd calculation
                    for (i in 1:k){
                        old_Phi[[i]] <- Topology[[i]]$adj
                    }
                }
                ll_old <- ll_new
                mw_old <- probs_new$mw
                probs <- probs_new$probs
            }
            #tracking of Phi's
            if (counter>burn_in){
                # if new Phi accepted, calculate NORM of topology and topology_test
                # matrices and add new matrix to most similar old matrix
                dimnames <- dimnames<-list(1:k,1:k)
                hd <- matrix(0, k , k, dimnames=dimnames)
                for (i in 1:k){
                    for (j in 1:k){
                        if (i == j) { next() }
                        if (Phi_track[[i]][1,1]!=0){
                            hd[i,j] <- norm((Phi_track[[i]]/Phi_track[[i]][1,1])-
                                                transitive.closure(Topology[[j]]$adj),
                                            type = "2")
                        } else{
                            hd[i,j] <- norm(Phi_track[[i]]-transitive.closure(
                                Topology[[j]]$adj), type = "2")
                        }
                    }
                }
                #choose which new phi is added to which old phi -> only accept
                #if unambigous
                hd <- as.data.frame(hd)
                minHd <- apply( hd, 1, which.min)
                if (sum(duplicated(minHd)) == FALSE){
                    #keep track of component switches
                    if (sum(accept_min != minHd)!=FALSE) {
                        switch_counter <- append(switch_counter, counter)
                        accept_min <- minHd
                    }
                }
                #add up matrices
                for (i in 1:k){
                    Phi_track[[i]] <- Phi_track[[i]] + transitive.closure(
                        Topology[[accept_min[i]]]$adj)
                    if (counter_accept%%post_gaps == 0){
                        Phi_track_N[[i]] <- Phi_track_N[[i]] + transitive.closure(
                            Topology[[accept_min[i]]]$adj)
                    }
                }
            }
            counter <- counter+1
            #stop MCMC
            if (counter==stop_counter) {
                stop <- TRUE
            }
            ll_tracker[[counter]] <- ll_old
            mw_tracker[[counter]] <- mw_old[[1]]
        }
        #save likelihood evolution for trace plot
        ll_track[[run]] <- ll_tracker
        #save data for mw_tracking
        mw_track[[run]] <- mw_tracker
        #save component switching
        switch_counter_saved[[run]] <- switch_counter
        #save ll_best from current run
        ll_best_timer_saved[[run]]<- ll_best_timer
        ll_best_vector_saved[[run]] <- ll_best_vector
        max.len <- max(max.len, ll_best_timer_saved[[run]])
        #save Phi_freq/ posterior and best_Phi
        for (i in 1:k){
            Phi_track_saved[[run]][[i]]<-list()
            Phi_track_saved[[run]][[i]]$all <- Phi_track[[i]]
            Phi_track_saved[[run]][[i]]$N <- Phi_track_N[[i]]
            Phi_best_saved[[run]][[i]] <- Phi_best[[i]]
            #choose Phi frequency matrix (1, 10, 100)
            #choose which posterior to use (gap size of saved Phi's)
            norm_post[[i]] <- Phi_track_N[[i]]/(Phi_track_N[[1]][1,1])
            bin_post <- norm_post
            bin_post[[i]][bin_post[[i]] <= 0.5] <- 0
            bin_post[[i]][bin_post[[i]] > 0.5] <- 1
        }
    }
    #create object to return from mcmc
    mcmc <- list()
    mcmc$trace_time <- seq(1:stop_counter)
    mcmc$trace <- list()
    mcmc$trace_mw <- list()
    mcmc$comp_switches <- list()
    mcmc$best_ll <- list()
    mcmc$best_ll_time <- list()
    mcmc$posterior <- list()
    mcmc$best_phi <- list()
    for (i in 1:starts){
        mcmc$trace[[i]] <- ll_track[[i]]
        mcmc$trace_mw[[i]] <- mw_track[[i]]
        mcmc$comp_switches[[i]] <- switch_counter_saved[[i]]
        mcmc$best_ll[[i]] <- ll_best_vector_saved[[i]]
        mcmc$best_ll_time[[i]] <- ll_best_timer_saved[[i]]
        mcmc$best_ll_length <- max.len
        mcmc$posterior[[i]] <- Phi_track_saved[[i]]
        mcmc$best_phi[[i]] <- Phi_best_saved[[i]]
    }
    return(mcmc)
}
cbg-ethz/mnem documentation built on Nov. 7, 2024, 7:35 p.m.