sce_norm_fn | R Documentation |
scran
or sctransform
.Normalize counts either by scran
or sctransform
.
sce_norm_fn(sce_cc, norm_type = c("scran", "sctransform", "none"), ...)
scran_normalization(
sce,
use_quickcluster = TRUE,
quickcluster_method = c("igraph", "hclust"),
BSPARAM = BiocSingular::IrlbaParam(),
BPPARAM = BiocParallel::SerialParam(),
...
)
sctransform_normalization(
sce,
vars_to_regress = NULL,
n_hvg = 3000L,
method = "glmGamPoi",
seed = 1L,
verbose = TRUE,
...
)
sce_cc |
(input target) A |
norm_type |
A character scalar: type of normalization. |
... |
Passed to |
sce |
A |
use_quickcluster |
A logical scalar: if |
quickcluster_method |
A character scalar: clustering method:
See |
BSPARAM |
A BiocSingular::BiocSingularParam object. |
BPPARAM |
A BiocParallel::BiocParallelParam object. |
vars_to_regress |
A list of character scalars: which variables to regress out during normalization.
Passed to |
n_hvg |
An integer scalar: number of HVGs to take. Passed to |
method |
A character scalar: passed to |
seed |
An integer scalar: passed to |
verbose |
A logical scalar: passed to |
A SingleCellExperiment
object. normalization_type = norm_type
is appended to metadata()
of the returned
SingleCellExperiment
object. Output target: sce_norm
The following items are added to metadata()
of the returned SingleCellExperiment
object:
normalization_type
: value of the norm_type
function argument.
For norm_type = "sctransform"
: sctransform_hvg_ids
, sctransform_pearson_residuals
, sctransform_vst.out
,
sctransform_model_list
.
sctransform_normalization()
Seurat::SCTransform()
is returning counts in log1p (natural log)
scale, but these are transformed to log2.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.