get_pca_selected_pcs | R Documentation |
The number of PCs and the selection strategy is controlled:
For single-sample analysis, via PCA_SELECTION_METHOD
and PCA_FORCED_PCS
parameters in 02_norm_clustering.yaml
.
For integration analysis, via pca_selection_method
and pca_forced_pcs
subparameters of INTEGRATION_METHODS
parameter in 01_integration.yaml
.
get_pca_selected_pcs(
sce_pca,
pca_elbow_pcs,
pca_gene_var_pcs,
pca_selection_method = c("elbow", "technical_noise", "forced"),
pca_forced_pcs = NULL
)
sce_pca |
A |
pca_elbow_pcs |
A numeric scalar: number of PCs selected by elbow point strategy. |
pca_gene_var_pcs |
A numeric scalar: number of PCs selected by technical noise strategy. |
pca_selection_method |
A character scalar: final selection strategy. |
pca_forced_pcs |
A numeric scalar: constant number of PCs defined in config file. |
A modified SingleCellExperiment
object:
The full PCA matrix in "pca_all"
slot of reducedDim()
.
The subsetted PCA matrix in "pca"
slot of reducedDim()
.
New items added to metadata()
: pca_selection_method
, pca_selected_pcs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.