suppressPackageStartupMessages(library(magrittr)) if (rlang::is_true(getOption("knitr.in.progress"))) { params_ <- scdrake::scdrake_list(params) } drake_cache_dir <- params_$drake_cache_dir drake::loadd( config_main, config_int_clustering, selected_markers_int_plots_final, dimred_plots_clustering_files, dimred_plots_clustering_files_out, dimred_plots_clustering_united_files, dimred_plots_clustering_united_files_out, cluster_graph_louvain_clustree_file, cluster_graph_leiden_clustree_file, cluster_sc3_clustree_file, cluster_sc3_cluster_stability_plots_file, cluster_kmeans_kbest_k, cluster_kmeans_k_clustree_file, cluster_kmeans_kbest_gaps_plot_file, dimred_plots_other_vars_files, dimred_plots_other_vars_files_out, selected_markers_int_plots_files, selected_markers_int_plots_files_out, dimred_plots_cell_annotation_files, dimred_plots_cell_annotation_files_out, cell_annotation_diagnostic_plots, cell_annotation_diagnostic_plots_files, dimred_plots_cell_annotation_files, dimred_plots_cell_annotation_files, path = drake_cache_dir ) cfg <- config_int_clustering if (!rlang::is_null(selected_markers_int_plots_files)) { selected_markers_int_plots_files <- dplyr::filter( selected_markers_int_plots_files, name == cfg$INTEGRATION_FINAL_METHOD, hvg_rm_cc_genes == cfg$INTEGRATION_FINAL_METHOD_RM_CC ) } report_html_file <- cfg$INT_CLUSTERING_REPORT_HTML_FILE any_clustering_enabled <- any( cfg$CLUSTER_GRAPH_LOUVAIN_ENABLED, cfg$CLUSTER_GRAPH_WALKTRAP_ENABLED, cfg$CLUSTER_GRAPH_LEIDEN_ENABLED, cfg$CLUSTER_KMEANS_K_ENABLED, cfg$CLUSTER_KMEANS_KBEST_ENABLED, cfg$CLUSTER_SC3_ENABLED )
Just to review data from the preceding pipeline step (01 - integration
).
int_method_desc <- scdrake::get_int_method_description(cfg$INTEGRATION_FINAL_METHOD) scdrake::catg0("The chosen integration method was '{cfg$INTEGRATION_FINAL_METHOD}': {int_method_desc$header}\n\n") if (cfg$INTEGRATION_FINAL_METHOD_RM_CC) { cat("\n\nCell cycle related genes were removed prior to HVG selection.\n\n") }
Show integration method details ▾
r int_method_desc$fn_link
r int_method_desc$description
cat(drake::readd(sce_int_final_info, path = drake_cache_dir)$str)
if (any_clustering_enabled) { cat(knitr::knit_child(here::here("Rmd/common/clustering/clustering.Rmd"), quiet = TRUE)) cat("\n\n#\n\n***\n\n") }
if (!is.null(cfg$INT_CLUSTERING_REPORT_DIMRED_PLOTS_OTHER)) { res <- scdrake::generate_dimred_plots_section( dimred_plots_other_vars_files = dimred_plots_other_vars_files, selected_markers_plots_files = selected_markers_int_plots_files, dimred_plots_rel_start = fs::path_dir(report_html_file), selected_markers_files_rel_start = fs::path_dir(report_html_file), main_header = "Dimensionality reduction plots" ) cat("\n\n#\n\n***\n\n") }
if (!is.null(cfg$CELL_ANNOTATION_SOURCES)) { cell_annotation_text <- str_space( "We used the [SingleR](https://bioconductor.org/packages/3.15/bioc/html/SingleR.html) package to predict cell types in the dataset.", "Given a reference dataset of samples (single-cell or bulk) with known labels, `SinglerR` assigns those labels to", "new cells from a test dataset based on similarities in their expression profiles.", "You can find more information in the [SingleR book](https://bioconductor.org/books/3.15/SingleRBook/).\n\n", "The used references are shown below in the tabs. Each have several diagnostic plots:\n\n", "- Score heatmaps show distribution of predicted cell types in computed clusters (if any), along with per-cell annotation scores\n", "- Marker heatmaps show genes that are markers for a given cell type in both the reference and current datasets,", "i.e. those markers have driven the decision to label cells by the chosen cell type\n", "- Delta scores show poor-quality or ambiguous assignments based on the per-cell 'delta', i.e., the difference between", "the score for the assigned label and the median across all labels for each cell.", "See [OSCA](https://bioconductor.org/books/3.15/SingleRBook/annotation-diagnostics.html#based-on-the-deltas-across-cells) for more details" ) res <- scdrake::generate_cell_annotation_plots_section( dimred_plots_cell_annotation_files = dimred_plots_cell_annotation_files, cell_annotation_diagnostic_plots = cell_annotation_diagnostic_plots, dimred_plots_rel_start = fs::path_dir(report_html_file), cell_annotation_diagnostic_plots_rel_start = fs::path_dir(report_html_file), main_header = "Cell annotation", text = cell_annotation_text ) cat("\n\n#\n\n***\n\n") }
Show input parameters
Main config
print(config_main)
print(cfg)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.