#' Calculate Pearson correlations of a binned matrix
#'
#' This function is used to generate a list object to be passed to getABSignal
#'
#' @param binmat A binned matrix list object from getBinMatrix
#' @param squeeze Whether to squeeze the matrix for Fisher's Z transformation
#'
#' @return A list object to pass to getABSignal
#'
#' @import GenomicRanges
#'
#' @export
#'
#' @examples
#'
#' library(GenomicRanges)
#'
#' #Generate random genomic intervals of 1-1000 bp on chr1-22
#' #Modified from https://www.biostars.org/p/225520/
#' random_genomic_int <- data.frame(chr = rep("chr14", 100))
#' random_genomic_int$start <- apply(random_genomic_int, 1, function(x) { round(runif(1, 0, getSeqLengths(chr = x)[[1]]), 0) })
#' random_genomic_int$end <- random_genomic_int$start + runif(1, 1, 1000)
#' random_genomic_int$strand <- "*"
#'
#' #Generate random counts
#' counts <- rnbinom(1000, 1.2, 0.4)
#'
#' #Build random counts for 10 samples
#' count.mat <- matrix(sample(counts, nrow(random_genomic_int) * 10, replace = FALSE), ncol = 10)
#' colnames(count.mat) <- paste0("sample_", seq(1:10))
#'
#' #Bin counts
#' bin.counts <- getBinMatrix(count.mat, makeGRangesFromDataFrame(random_genomic_int), chr = "chr14", genome = "hg19")
#'
#' #Calculate correlations
#' bin.cor.counts <- getCorMatrix(bin.counts)
getCorMatrix <- function(binmat, squeeze = FALSE) {
#Calculate correlations
message("Calculating correlations...")
#bind back up the global means and shrunken bins
binmat$x <- cbind(binmat$x, binmat$gmeans)
binmat.cor <- suppressWarnings(cor(t(binmat$x)))
gr.cor <- binmat$gr
if (squeeze) {
binmat.cor <- fisherZ(binmat.cor)
}
message("Done...")
return(list(gr.cor=gr.cor, binmat.cor=binmat.cor))
}
#Helper function to squeeze binary matrix for transformation
.squeezeit <- function(cormat) {
cormat * 0.999999
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.