## given a list of data frames it will give a new data frame
## x <- data.frame(a=1:3, b= LETTERS[1:3])
## y <- data.frame(a=(1:3)*10, b= letters[1:3])
## inLst <- list(x=x, y=y)
## .rbindListOfDataframs(inLst)
.rbindListOfDataframs<- function(inList)
{
allColNames = lapply(inList, colnames)
allColNames = unique(unlist(allColNames))
rtx = data.frame(); ncolX=0;
for(dfi in inList)
{
if( length(colnames(dfi)) > ncolX)
{ ncolX= length(colnames(dfi))
maxCols =colnames(dfi)}
for(cx in allColNames)
{
if(is.element(cx, colnames(dfi))==FALSE)
{dfi[, cx]=NA}
}
rtx = rbind(rtx, dfi[, allColNames])
}
rtx1 = rtx[, maxCols]
rtx2 = rtx[, setdiff(colnames(rtx), maxCols)]
RTz = cbind(rtx1, rtx2)
return(RTz)
}
##---- gives index of element in vector
##---- also works for NA
getIndex <- function(inVec, indxOf)
{
if(is.na(indxOf)){return(which(is.na(inVec)))}
return(which(inVec==indxOf))
}
.castDataFram <- function(df, row.var, col.var, value, collapse = ";")
{
uqR <- unique(as.character(df[,row.var]))
uqC <- unique(as.character(df[,col.var]))
dfx <- matrix(NA, nrow = length(uqR), ncol = length(uqC) )
rownames(dfx) <- uqR ; colnames(dfx) <- uqC
ml <- list()
for(r in uqR)
{
cl <- list()
for(c in uqC)
{ cl[[c]] <- c() }
ml[[r]] <- cl
}
for(I in seq_len(nrow(df)))
{
v <- ml[[df[I, row.var]]][[df[I, col.var]]]
ml[[df[I, row.var]]][[df[I, col.var]]] <- c(v, df[I, value]) #vx
}
for(r in rownames(dfx))
{
for(c in colnames(dfx))
{
v <- ml[[r]][[c]]
if(length(v)==0){v <- NA}
vz <- NULL
if(collapse =="mean")
{
vz <- mean(as.numeric(v[!is.na(v)]))
} else if (collapse =="median")
{
vz <- median(as.numeric(v[!is.na(v)]))
} else
{
if(length(v)>1)
{
vz <- pasteWithoutNA(v, collapse = collapse)
} else
{ vz <- v }
if(!is.na(vz) & vz==""){vz <- NA}
}
if(is.nan(vz)){vz <- NA}
dfx[r,c] <- vz
}
}
dfx <- data.frame(dfx, stringsAsFactors = FALSE, check.names = FALSE)
return(dfx)
}
.appendToList <- function(in.list, value)
{
in.list[[length(in.list)+1]]=value
return(in.list)
}
##---------------------------------------------------------------------------
##---------------remove NA col-----------------------------------------------
.removeNAcol <- function(df)
{ return(df[, !apply(is.na(df), 2, all)]) }
##------------------------------------------------------------------------
##---------------reorder column ------------------------------------------
.reorderCol <- function(df, columnName, newIndx)
{
OtherCN = colnames(df)[colnames(df)!=columnName]
newCN = append(OtherCN, columnName, after= (newIndx-1) )
return(df[,newCN])
}
##-------------------------------------------------------------------------
##-------------------------------------------------------------------------
## paste vector elements together while removing NAs
## \code{pasteWithoutNA} paste vector elements together while removing NAs
## @param L A vector with values and NAs
## @param collapse Collapse string, default "+"
## @return Returns a string with vector values pasted together
## @examples
## L = c("A", NA, "B", NA, NA, "C")
## pasteWithoutNA(L, collapse = " + ")
pasteWithoutNA <- function(L, collapse = " + "){paste(L[!is.na(L)],
collapse = collapse)}
##------------------------------------------------------------------------
##--- this will creat empty theme for ggplot -----------------------------
.ggplotEmptyTheme <- function(plt){
plt + ggplot2::theme(panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
legend.key=element_blank(), ##removes legend background
axis.line = ggplot2::element_line(colour = "black"))
}
##-------------------
# Function to print data.frame in message
#
# \code{printAndCapture} prints data.frame in stop or warning functions
# @examples
# df <- data.frame(a=1:5, b=11:15)
# msg <- sprintf("data frame is:\n%s", printAndCapture(df))
# warning(msg)
printAndCapture <- function(x)
{
paste(capture.output(print(x)), collapse = "\n")
}
###----------------------------
##Normalize a vector between 0 and 1
.normalize01 <- function(x) { (x-min(x))/(max(x)-min(x)) }
###------------------------------
##-------------------
## Function to remove low variance features
## Function to remove low variance features
## @examples
## data(cars)
## removeZeroVar(cars, varCutoff=0)
removeZeroVar <- function(df, varCutoff=0, sort=TRUE)
{
dfR <- apply(df,2, stats::var)
dfR <- dfR[dfR>varCutoff]
if(sort==TRUE)
{
dfR <- sort(dfR, decreasing = TRUE)
}
return(df[, names(dfR), drop=FALSE])
}
extractBetweenTags <- function(inVec, start.tag=0, end.tag=0)
{
inVIndx= seq_along(inVec)
stIndx = min(inVIndx[inVec!=start.tag])
V2 = inVec[stIndx:length(inVec)]
v2end = which(V2==end.tag)
if(length(v2end)>0)
{
enIndx = min(v2end) -1
enIndxR= enIndx + stIndx -1
} else
{enIndxR = length(inVec)}
Vi = stIndx:enIndxR
return(Vi)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.