R/4_plot.R

Defines functions list2mat plot_subgroup_points default_geom default_subtitle default_x plot_exprs_per_coef plot_feature_boxplots plot_sample_boxplots plot_exprs .plot_exprs add_facetvars plot_violins plot_feature_densities plot_sample_densities is_uniquely_empty plot_densities add_highlights plot_data make_twofactor_colors make_onefactor_colors make_colors make_var_palette make_fvar_palette make_svar_palette add_fill_scale add_color_scale

Documented in add_facetvars default_geom list2mat make_colors plot_data plot_densities plot_exprs plot_exprs_per_coef plot_feature_boxplots plot_feature_densities plot_sample_boxplots plot_sample_densities plot_subgroup_points plot_violins

#=============================================================================
#
#                    add_color_scale
#                    add_fill_scale
#
#==============================================================================

#' Add color scale
#' @param object   SummarizedExperiment
#' @param color    string: svar mapped to color
#' @param show     TRUE or FALSE (default)
#' @param verbose  TRUE or FALSE (default)
#' @return default color values vector
#' @examples
#' file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
#' subgroups <- sprintf('%s_STD', c('E00','E01','E02','E05','E15','E30','M00'))
#' object <- read_maxquant_proteingroups(file, subgroups = subgroups)
#' p <- plot_sample_densities(object)
#' add_color_scale(p, color = 'subgroup', data = sdt(object))
#' @noRd
add_color_scale <- function(p, color, data, palette = NULL){
# Assert
    assert_is_data.frame(data)
    assert_is_subset(color, names(data))
# Colors
    if (!is.null(color)){
        values0 <- data[[color]]
        if (!is.numeric(values0)){
            if (is.character(values0)) values0 %<>% factor()
            levels0 <- levels(values0)
            if (is.null(palette))  palette <- make_colors(levels0, sep = guess_sep(levels0))
            p <- p + scale_color_manual(values = palette, na.value = 'gray80')
        }
    }
# Return
    return(p)
}


add_fill_scale <- function(p, fill, data, palette = NULL){
# Assert
    assert_is_data.frame(data)
# Colors
    if (!is.null(fill)){
        assert_is_subset(fill, names(data))
        values0 <- data[[fill]]
        if (!is.numeric(values0)){
            levels0 <- as.character(unique(values0))
            if (is.null(palette)) palette <- make_colors(levels0, sep = guess_sep(levels0))
            p <- p + scale_fill_manual(values = palette, na.value = 'gray80')
        }
    }
# Return
    return(p)
}

make_svar_palette <- function(object, svar){ 
    if (is.null(svar))               return(NULL)
    if (is.numeric(object[[svar]]))  return(NULL)
    make_colors(slevels(object, svar))
}

make_fvar_palette <- function(object, fvar){
    if (is.null(fvar)) return(NULL)
    make_colors(flevels(object, fvar))
}

make_var_palette <- function(object, var){
    if (is.null(var)) return(NULL)
    if (var %in% svars(object)){        make_svar_palette(object, var)
    } else if (var %in% fvars(object)){ make_fvar_palette(object, var) }
}

#' Make colors
#' @param varlevels character vector
#' @param sep       string
#' @param show      TRUE or FALSE: whether to plot
#' @param verbose   TRUE or FALSE: whether to msg
#' @examples 
#' make_colors(c('A',   'B',   'C',  'D'  ), show = TRUE)
#' make_colors(c('A.1', 'B.1', 'A.2','B.2'), show = TRUE)
#' @export
make_colors <- function(
    varlevels, sep = guess_sep(varlevels), show = FALSE, verbose = FALSE
){
# Numeric colors
    if (is.numeric(varlevels)){
        colors <- brewer.pal(length(varlevels), 'YlOrRd')
        names(colors) <- varlevels
        if (show) pie(rep(1, length(colors)), names(colors), col = colors)
        return(colors)
    }
# # Twofactor colors
#     if (!is.null(sep)){            # consistent separator
#         if (length(varlevels)>2){  # 3+ samples
#             n1 <- length(unique(split_extract_fixed(varlevels, sep, 1)))
#             n2 <- length(unique(split_extract_fixed(varlevels, sep, 2)))
#             if (n1>1 & n2>1){             # 2+ huevar levels
#                 return(make_twofactor_colors(
#                     varlevels, sep = sep, show = show, verbose = verbose))
#             }
#         }
#     }
# Onefactor colors
    return(make_onefactor_colors(varlevels, show = show, verbose = verbose))
}

#' Create default ggplot colors for factor levels
#' @param varlevels  string vector
#' @param h          start hue
#' @param l          luminance
#' @param show       TRUE/FALSE
#' @param verbose    TRUE/FALSE
#' @return string vector: elements = colors, names = factor levels
#' @author John Colby
#' @references https://stackoverflow.com/questions/8197559
#' @noRd
make_onefactor_colors <- function(
    varlevels, h = 15, l = 65, show = FALSE, verbose = TRUE
){
    n <- length(varlevels)
    hues <- seq(h, h + 360, length = n + 1)
    colors <- hcl(h = hues, l = l, c = 100)[seq_len(n)] %>%
                    set_names(varlevels)
    if (show) pie(rep(1, length(colors)), names(colors),
                    col = colors)
    if (verbose)  message('\t\tMake default ggplot colors')
    colors
}


#' Make composite colors
#' @param varlevels string vector
#' @param sep     string
#' @param show    TRUE/FALSE: show colors in pie plot?
#' @param verbose TRUE/FALSE
#' @return named string vector (elements = colors, names = color_var levels)
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' subgroups <- unique(paste(object$Diabetes, object$Time, sep = '.'))
#' make_twofactor_colors(subgroups, show = TRUE)
#' @noRd
make_twofactor_colors <- function(
    varlevels, sep  = guess_sep(varlevels), show = FALSE, verbose = TRUE
){
    # Assert
    assert_has_no_duplicates(varlevels)
    assert_is_not_null(sep)
    if (verbose)  message('\t\tMake composite colors')

    # Satisfy CHECK
    subgroup <- V1 <- V2 <- color <- hue <- luminance <- NULL

    # Split into components
    #    * V1: first n-1 components => will be mapped to hue
    #    * V2: last component       => will be mapped to luminance
    # This approach works also when more than two components are present
    # It is therefore used instead of split_values()
    V1  <-  stri_split_fixed(varlevels, sep) %>%
            vapply( function(x) paste0(x[-length(x)], collapse = sep),
                    character(1))
    V2  <-  stri_split_fixed(varlevels, sep) %>%
            vapply(function(x) x[length(x)], character(1))
    V1levels <- sort(unique(V1))
    V2levels <- sort(unique(V2))
    n1 <- length(V1levels)
    n2 <- length(V2levels)
    hues <- seq(15, 375, length = n1 + 1)[seq_len(n1)] %>% set_names(V1levels)

    colors <- character(0)
    for (i in seq_along(hues)){  # https://stackoverflow.com/a/5738083
        # OLD IMPLEMENTATION
        #     colors  %<>%  c(sequential_hcl(
        #                        n2, h = hues[[i]], power = 1, c = c(50, 100),
        #                        l = c(90, 30)) %>%
        #                    set_names(paste0(V1levels[[i]], sep, V2levels)))
        basecolor  <- hcl(h = hues[[i]], c = 100, l = 50)
        newcolors <- grDevices::colorRampPalette(c('white', basecolor))(n2+1)[-1]
        names(newcolors) <- paste0(V1levels[[i]], sep, V2levels)
        colors %<>% c(newcolors)
    }
    if (show) pie(rep(1, length(colors)), names(colors),
                col = colors)

    return(colors)
}

#=============================================================================
#
#     plot_data()
#
#==============================================================================

#' Plot data
#' @param data        data.frame'
#' @param geom        geom_point, etc.
#' @param color       variable mapped to color (symbol)
#' @param fill        variable mapped to fill (symbol)
#' @param linetype    variable mapped to linetype (symbol)
#' @param ...         mapped aesthetics
#' @param palette     color palette (named character vector)
#' @param fixed       fixed  aesthetics (list)
#' @param theme       list with ggplot theme specifications
#' @return ggplot object
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' object %<>% pca()
#' data <- sdt(object)
#' plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`)
#' plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, color = subgroup)
#' plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, color = NULL)
#' fixed <- list(shape = 15, size = 3)
#' plot_data(data, x = `effect~sample_id~pca1`, y = `effect~sample_id~pca2`, fixed = fixed)
#' @author Aditya Bhagwat, Johannes Graumann
#' @export
plot_data <- function(
    data, geom = geom_point, color = NULL, fill = NULL, linetype = NULL, ..., palette = NULL, 
    fixed = list(), theme = list()
){
    color <- enquo(color)
    fill  <- enquo(fill)
    linetype <- enquo(linetype)
    dots  <- enquos(...)
    fixed %<>% extract(setdiff(names(fixed), names(dots)))

    p <- ggplot(data    = data,  # https://stackoverflow.com/a/55816211
                mapping = eval(expr(aes(color=!!color, fill=!!fill, linetype = !!linetype, !!!dots))))
    p <- p + do.call(geom, fixed)
    p <- p + theme_bw()
    colorstr <- if (quo_is_null(color)) NULL else as_name(color)
    fillstr  <- if (quo_is_null(fill))  NULL else as_name(fill)
    p <- add_color_scale(p, colorstr, data, palette = palette)
    p <- add_fill_scale( p, fillstr,  data, palette = palette)
    p <- p + do.call(ggplot2::theme, {{theme}})

    p
}


#==============================================================================
#
#                  add_highlights
#
#==============================================================================
add_highlights <- function(p, x, hl, geom = geom_point, fixed_color = "black") {
    feature_name <- value <- NULL
    if (is.null(hl)) return(p)
    hl_df <- p$data[get(hl)==TRUE]
    args <- list(data = hl_df)
    if (identical(geom, geom_point)) {
        many_hl <- length(unique(args$data$feature_name)) > 6
        if (many_hl) args$data$feature_name <- hl
        args %<>% c(list(aes(shape = feature_name, x = !!sym(x), y = value), size = rel(3), color = fixed_color))
    }
    p <- p + do.call(geom, args)
    if (identical(geom, geom_point)) p <- p +
        labs(shape = if (many_hl) NULL else hl) +
        guides(fill = guide_legend(override.aes = list(shape = NA)))
    p
}


#=============================================================================
#
#                plot_densities
#                    plot_sample_densities()
#                    plot_feature_densities
#
#=============================================================================


#' Plot sample/feature distributions
#'
#' @param object      SummarizedExperiment
#' @param assay       string
#' @param group       svar (string)
#' @param fill        svar (string)
#' @param color       svar (string)
#' @param linetype    svar (string)
#' @param facet       svar (character vector)
#' @param n           number
#' @param nrow        number of facet rows
#' @param ncol        number of facet cols
#' @param dir         'h' (horizontal) or 'v' (vertical)
#' @param scales      'free', 'fixed', 'free_y'
#' @param labeller    e.g. label_value
#' @param palette     named character vector
#' @param fixed       fixed aesthetics
#' @seealso \code{\link{plot_sample_violins}},
#'          \code{\link{plot_sample_boxplots}}
#' @return  ggplot object
#' @examples
#' # Data
#'     file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#'     object <- read_metabolon(file)
#'     object %<>% extract(, order(.$subgroup))
#'     
#' # Sample distributions
#'     plot_sample_densities(object)
#'     plot_sample_violins(  object, facet = 'Time')
#'     plot_sample_boxplots(object)
#'     plot_exprs(object)
#'     plot_exprs(object, dim = 'samples', x = 'subgroup', facet = 'Time')
#'     
#' # Feature distributions
#'     plot_feature_densities(object)
#'     plot_feature_violins(  object)
#'     plot_feature_boxplots( object)
#' @export
plot_densities <- function(
    object, assay = assayNames(object)[1], group, fill, color = NULL, linetype = NULL,
    facet = NULL, nrow = NULL, ncol = NULL, dir = 'h', scales = 'free_y', 
    labeller = label_value, 
    palette = NULL, fixed = list(alpha = 0.8, na.rm = TRUE)
){
# Assert / Process
    assert_is_valid_sumexp(object)
    assert_scalar_subset(assay, assayNames(object))
                            assert_is_a_string(group)
    if (!is.null(fill))     assert_is_a_string(fill)
    if (!is.null(color))    assert_is_a_string(color)
    if (!is.null(facet))    assert_is_a_string(facet)
    if (!is.null(nrow))     assert_is_a_number(nrow)
    if (!is.null(ncol))     assert_is_a_number(ncol)
    if (!is.null(palette))  assert_is_character(palette)
                            assert_is_list(fixed)
                            assert_is_subset(group, c(svars(object), fvars(object)))
    if (!is.null(fill))     assert_is_subset(fill,  c(svars(object), fvars(object))) 
    if (!is.null(color))    assert_is_subset(color, c(svars(object), fvars(object)))
    if (!is.null(facet))    assert_is_subset(facet, c(svars(object), fvars(object)))
                            assert_is_subset(dir, c('h', 'v'))
    value <- NULL
# Prepare
    plotvars <- group
    if (!is.null(fill))   plotvars %<>% c(fill)  %>% unique()
    if (!is.null(color))  plotvars %<>% c(color) %>% unique()
    if (!is.null(facet))  plotvars %<>% c(facet) %>% unique()
    plottedsvars <- intersect(plotvars, svars(object))
    plottedfvars <- intersect(plotvars, fvars(object))
    assert_is_identical_to_true(is_uniquely_empty(plottedsvars, plottedfvars))
    if (!is.null(fill))  object[[fill]] %<>% num2char()
    dt <- sumexp_to_longdt(object, assay = assay, svars = plottedsvars, fvars = plottedfvars)
# Plot
    groupsym    <- if (is.null(group))    quo(NULL) else sym(group)
    fillsym     <- if (is.null(fill ))    quo(NULL) else sym(fill)
    colorsym    <- if (is.null(color))    quo(NULL) else sym(color)
    linetypesym <- if (is.null(linetype)) quo(NULL) else sym(linetype)
    p <- plot_data( dt, geom = geom_density,
                           x = value,
                        fill = !!fillsym,
                       color = !!colorsym,
                    linetype = !!linetypesym,
                       group = !!groupsym,
                     palette = palette,
                       fixed = fixed )
    
    if (!is.null(facet))  p <- p + facet_wrap( facet,
                                                nrow = nrow,
                                                ncol = ncol, 
                                                 dir = dir,
                                            labeller = labeller, 
                                              scales = scales )
    p
}

is_uniquely_empty <- function(x, y){
    ( is_empty(x) | !is_empty(y)) | (!is_empty(x) |  is_empty(y))
}

#' @rdname plot_densities
#' @export
plot_sample_densities <- function(
      object,
       assay = assayNames(object)[1],
       group = 'sample_id',
        fill = if ('subgroup' %in% svars(object)) 'subgroup' else  'sample_id',
       color = NULL, 
    linetype = NULL,
           n = 100,
       facet = NULL,
        nrow = NULL,
        ncol = NULL,
         dir = 'h',
      scales = 'free_y',
    labeller = label_value,
     palette = NULL,
       fixed = list(alpha = 0.8, na.rm = TRUE)
){
    object %<>% extract_samples_evenly(n)
    plot_densities( object,
                     assay    = assay,
                     group    = group,
                     fill     = fill,
                     color    = color,
                     linetype = linetype,
                     facet    = facet, nrow = nrow, ncol = ncol, dir = dir, scales = scales,
                     labeller = labeller, 
                     palette  = palette, 
                     fixed    = fixed ) +
    ggtitle("Sample Densities")
}

feature_id <- NULL
#' @rdname plot_densities
#' @export
plot_feature_densities <- function(
      object,
       assay = assayNames(object)[1],
        fill = 'feature_id',
       group = fill,
       color = NULL,
    linetype = NULL,
           n = 9,
       facet = NULL,
        nrow = NULL,
        ncol = NULL,
         dir = 'h',
      scales = 'free', 
    labeller = label_value, palette = NULL, 
       fixed = list(alpha = 0.8, na.rm = TRUE)
){
    object %<>% extract_features_evenly(n)
    plot_densities(   object,
                       assay = assay,
                       group = group,
                        fill = fill,
                       color = color,
                    linetype = linetype,
                       facet = facet, 
                        nrow = nrow,
                        ncol = ncol, 
                         dir = dir, 
                      scales = scales, 
                    labeller = labeller, 
                     palette = palette, 
                       fixed = fixed ) +
    ggtitle("Feature Densities")
}

#==============================================================================
#
#               plot_violins()
#                   plot_sample_violins()
#                   plot_feature_violins
#
#==============================================================================

#' Plot sample/feature violins
#'
#' @param object      SummarizedExperiment
#' @param assay       string
#' @param subgroup    subgroup svar
#' @param x           svar (string)
#' @param fill        svar (string)
#' @param color       svar (string)
#' @param n           number
#' @param group       svar (string)
#' @param facet       svar (character vector)
#' @param nrow        NULL or number
#' @param ncol        NULL or number
#' @param dir         'h' or 'v' : are facets filled horizontally or vertically ?
#' @param scales      'free', 'free_x', 'free_y', or 'fixed'
#' @param labeller    label_both or label_value
#' @param highlight   fvar expressing which feature should be highlighted (string)
#' @param palette     named color vector (character vector)
#' @param fixed       fixed aesthetics
#' @return  ggplot object
#' @seealso \code{\link{plot_exprs}},
#'          \code{\link{plot_densities}}
#' @examples
#' # data
#'     file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#'     object <- read_metabolon(file)
#'     object %<>% extract(, order(.$subgroup))
#'     control_features <- c('biotin','phosphate')
#'     fdata(object) %<>% cbind(control = .$feature_name %in% control_features)
#' # plot
#'     plot_violins(object[1:12, ], x = 'feature_id', fill = 'feature_id')
#'     plot_feature_violins(object[1:12, ])
#'     plot_sample_violins(object[, 1:12],  highlight = 'control')
#'     plot_subgroup_violins(object[1:4, ], subgroup = 'subgroup')
#' @export
plot_violins <- function(
       object, 
        assay = assayNames(object)[1], 
            x, 
         fill, 
        color = NULL, 
        group = NULL, 
        facet = NULL, 
         nrow = NULL, 
         ncol = NULL, 
          dir = 'h',
       scales = "free",
     labeller = label_value,
    highlight = NULL, 
      palette = NULL, 
        fixed = list(na.rm = TRUE)
){
# Process
    assert_is_all_of(object, 'SummarizedExperiment')
    assert_is_subset(assay, assayNames(object))
                              assert_is_a_string(x)
                              assert_is_a_string(fill)
    if (!is.null(color))      assert_is_a_string(color)
    if (!is.null(group))      assert_is_a_string(group)
    if (!is.null(facet))      assert_is_a_string(facet)
    if (!is.null(highlight))  assert_is_a_string(highlight)
                              assert_is_subset(x,         c(svars(object), fvars(object)))
                              assert_is_subset(fill,      c(svars(object), fvars(object)))
    if (!is.null(color))      assert_is_subset(color,     c(svars(object), fvars(object)))
    if (!is.null(group))      assert_is_subset(group,     c(svars(object), fvars(object)))
    if (!is.null(facet))      assert_is_subset(facet,     c(svars(object), fvars(object)))
    if (!is.null(highlight))  assert_is_subset(highlight, c(svars(object), fvars(object)))
    assert_is_list(fixed)
    value <- NULL
# Prepare
    plotvars <- c('feature_name')
                              plotvars %<>% c(x)         %>% unique()
                              plotvars %<>% c(fill)      %>% unique()
    if (!is.null(color))      plotvars %<>% c(color)     %>% unique()
    if (!is.null(highlight))  plotvars %<>% c(highlight) %>% unique()
    if (!is.null(facet))      plotvars %<>% c(facet)     %>% unique()
    plottedsvars <- intersect(plotvars, svars(object))
    plottedfvars <- intersect(plotvars, fvars(object))
    dt <- sumexp_to_longdt(object, assay = assay, svars = plottedsvars, fvars = plottedfvars)
    dtsum <- dt[, .(median = median(value, na.rm = TRUE), 
                       iqr =    IQR(value, na.rm = TRUE) ), by = x]
# Plot
    xsym         <- sym(x)
    fillsym      <- sym(fill)
    groupsym     <- if (is.null(group))  quo(NULL)  else  sym(group)
    colorsym     <- if (is.null(color))  quo(NULL)  else  sym(color)
    p <- plot_data( dt, 
                    geom = geom_violin,
                       x = !!xsym,
                       y = value,
                    fill = !!fillsym,
                   color = !!colorsym,
                   group = !!groupsym, 
                 palette = palette,
                   fixed = fixed)
    #p <- p + geom_point(data = dtsum, aes(x = !!xsym, y = median))
    p <- p + geom_boxplot(width = 0.1, na.rm = TRUE)
    #p <- p + geom_errorbar(
    #    data    = dtsum, 
    #    mapping = aes(x = !!xsym, ymin = median-iqr, ymax = median+iqr, y = median), 
    #    width   = 0)
    p %<>% add_highlights( x = x, 
                          hl = highlight,
                        geom = geom_point)
    
    if (!is.null(facet))  p <- p + facet_wrap( facet, 
                                                nrow = nrow,
                                                ncol = ncol, 
                                                 dir = dir,
                                              scales = scales,
                                            labeller = labeller)
    # Finish
    breaks <- unique(dt[[x]])
    if (length(breaks)>50) breaks <- dt[, .SD[1], by = fill][[x]]
    p <- p + xlab(NULL) + scale_x_discrete(breaks = breaks) +
        theme(axis.text.x = element_text(angle = 90, hjust = 1))
# Return
    p
}


#' @rdname plot_violins
#' @export
plot_feature_violins <- function(
       object, 
        assay = assayNames(object)[1], 
            x = 'feature_id', 
         fill = 'feature_id', 
        color = NULL, 
            n = 9,
        facet = NULL, 
         nrow = NULL, 
         ncol = NULL, 
          dir = 'h', 
       scales = 'free',
     labeller = label_value, 
    highlight = NULL, 
        fixed = list(na.rm = TRUE)
){
    object %<>% extract_features_evenly(n)
    plot_violins(   object, 
                     assay = assay,
                         x = x,
                      fill = fill,
                     color = color,
                     facet = facet, 
                      nrow = nrow,
                      ncol = ncol,
                      dir  = dir,
                  labeller = labeller,
                 highlight = highlight,
                     fixed = fixed) + 
    ggtitle('Feature Violins')
}


#' @rdname plot_violins
#' @export
plot_sample_violins <- function(
       object,
        assay = assayNames(object)[1],
            x = 'sample_id', 
         fill = if ('subgroup' %in% svars(object)) 'subgroup'  else  'sample_id', 
        color = NULL,
            n = 100,
        facet = NULL,
         nrow = NULL,
         ncol = NULL,
          dir = 'h', 
       scales = 'free',
     labeller = label_value,
    highlight = NULL,
        fixed = list(na.rm = TRUE)
){
    object %<>% extract_samples_evenly(n)
    plot_violins( object,
                  assay = assay,
                      x = x,
                   fill = fill,
                  color = color,
                  facet = facet, 
                   nrow = nrow,
                   ncol = ncol,
                    dir = dir,
                 scales = scales, 
               labeller = labeller,
              highlight = highlight,
                  fixed = fixed) + 
    ggtitle('Sample Violins')
}


extract_evenly <- function(l, p){
    round(seq(1, l, length.out = p))
}

extract_samples_evenly <- function(object, n){
    if (n < ncol(object)){
        object %<>% extract(, extract_evenly(ncol(object), n))}
    object
}

extract_features_evenly <- function(object, n){
    if (n < nrow(object)){
        object %<>% extract(rowSums(!is.na(values(object))) > 2, )
        object %<>% extract(extract_evenly(nrow(object), n), )
    }
    object
}


subgroup <- NULL
#' @rdname plot_violins
#' @export
plot_subgroup_violins <- function(
       object, 
        assay = assayNames(object)[1],
     subgroup,
            x = 'subgroup', 
         fill = 'subgroup',
        color = NULL,
    highlight = NULL,
        facet = 'feature_id', 
        fixed = list(na.rm = TRUE)
){
    plot_violins( object, 
                  assay = assay, 
                      x = x, 
                   fill = fill, 
                  color = color,
                  facet = facet, 
              highlight = highlight,
                  fixed = fixed) + 
    ggtitle('Subgroup violins')
}


#==============================================================================
#
#               extract_coef_features
#                   .extract_p_features
#                   .extract_fdr_features
#                   .extract_effectsize_features
#                       ..extract_statistic_features
#                   .extract_sign_features
#                   .extract_n_features
#
#==============================================================================


cmessage <- function(pattern, ...)  message(sprintf(pattern, ...))

..extract_statistic_features <- function(
        object, 
         coefs, 
     statistic, 
      comparer, 
     threshold, 
           fit = fits(object)[1], 
      combiner = '|', 
       verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    if (is.null(fit))   return(object)
    if (is.null(coefs)) return(object)
    assert_scalar_subset(statistic, c('p', 'fdr', 'effect', 'effectsize'))
    assert_scalar_subset(comparer,  c('<', '>', '=='))
    assert_is_a_number(threshold)
    assert_is_subset(fit,                fits(object))
    assert_is_subset(coefs, autonomics::coefs(object, fit = fit))
    assert_scalar_subset(combiner, c('|', '&'))
    assert_is_a_bool(verbose)
# Filter
    fun <- getFromNamespace(sprintf('%smat', statistic), 'autonomics')
    x <- fun(object, fit = fit, coef = coefs)
    if (is.null(x))  return(object)
    idx <- get(comparer)(x, threshold)
    idx[is.na(idx)] <- FALSE
    fun <- function(y) Reduce(get(combiner), y)
    idx %<>% apply(1, fun)
    idx %<>% unname()
# Return
    n0 <- length(idx)
    n1 <- sum(idx, na.rm = TRUE)
    if (verbose & n1<n0){
        combiner <- paste0(' ', combiner, ' ')
        cmessage('\t\t\tRetain %d/%d features: %s(%s) %s %s', 
                n1, n0, statistic, paste0(coefs, collapse = combiner), 
                comparer, as.character(threshold))  
    }
    object[idx, ]
}

#' @rdname extract_coef_features
#' @export
.extract_p_features <- function(
       object, 
        coefs, 
            p = 0.05, 
          fit = fits(object), 
     combiner = '|',
      verbose = TRUE
){
      assert_is_fraction(p)
      ..extract_statistic_features( object = object,        
                                     coefs = coefs,
                                 statistic = 'p',
                                  comparer = '<',   
                                 threshold = p,
                                       fit = fit,
                                  combiner = combiner,
                                   verbose = verbose )
}

#' @rdname extract_coef_features
#' @export
.extract_fdr_features <- function(
       object, 
        coefs,
          fdr = 0.05,
          fit = fits(object),
     combiner = '|',
      verbose = TRUE
){
    assert_is_fraction(fdr)
    ..extract_statistic_features(  object = object,
                                    coefs = coefs,
                                statistic = 'fdr',
                                 comparer = '<',
                                threshold = fdr,
                                      fit = fit,
                                 combiner = combiner,
                                  verbose = verbose )
}


#' @rdname extract_coef_features
#' @export
.extract_effectsize_features <- function( 
       object, 
        coefs, 
   effectsize = 1,
          fit = fits(object),
     combiner = '|',
      verbose = TRUE
){
    assert_weakly_positive_number(effectsize)
    ..extract_statistic_features(  object = object,
                                    coefs = coefs,
                                statistic = 'effectsize',
                                 comparer = '>',
                                threshold = effectsize,
                                      fit = fit,
                                 combiner = combiner,
                                  verbose = verbose )
}

#' @rdname extract_coef_features
#' @export
.extract_sign_features <- function(
       object, 
        coefs, 
         sign, 
          fit = fits(object)[1], 
     combiner = '|',
      verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    assert_is_subset(sign, c(-1, +1))
    if (is.null(fit))    return(object)
    if (is.null(coefs))  return(object)
# Filter
    x <- autonomics::effectmat(object, fit = fit, coef = coefs)
    idx <- unname(apply(sign(x), 1, function(y)  Reduce(get(combiner), sign(y) %in% sign) ))
# Return
    n0 <- length(idx)
    n1 <- sum(idx, na.rm = TRUE)
    if (verbose & n1<n0){
        combiner <- paste0(' ', combiner, ' ')
        cmessage('\t\t\tRetain %d/%d features: sign(%s) %%in%% c(%s)', 
            n1, n0, paste0(coefs, collapse = combiner), paste0(sign,  collapse = ','))
    }
    object[idx, ]
}

#' Order on p 
#' @param object   SummarizedExperiment
#' @param fit      string vector: subset of `fits(object)`
#' @param coefs    string vector: subset of `coefs(object)`
#' @param combiner '|' or '&'
#' @param verbose  TRUE or FALSE
#' @examples 
#' # Read
#'   file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#'   object <- read_metabolon(file)
#'   order_on_p(object)
#'   order_on_p(fit_limma(object), coefs = c('t1-t0', 't2-t0', 't3-t0'))
#' @return SummarizedExperiment
#' @export
order_on_p <- function(
      object, 
         fit = autonomics::fits( object), 
       coefs = autonomics::coefs(object, fit = fit), 
    combiner = '|',
     verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    if (is.null(fit))  return(object)
    assert_is_subset(fit,   autonomics::fits(  object))
    assert_is_subset(coefs, autonomics::coefs( object, fit = fit))
    assert_scalar_subset(combiner, c('|', '&'))
    assert_is_a_bool(verbose)
# Order    
    pmat <- autonomics::pmat( object, fit = fit, coef = coefs)
    if (is.null(pmat))  return(object)
    if (verbose)   cmessage("\t\tp-order features on: %s (%s)", 
                            paste0(fit,   collapse = ', '), 
                            paste0(coefs, collapse = ', '))
    if (combiner == '|')  idx <- order(matrixStats::rowMins(pmat))
    if (combiner == '&')  idx <- order(matrixStats::rowMaxs(pmat))
# Return
    object[idx, ]
}


#' @rdname order_on_p
#' @export
order_on_effect <- function(
      object, 
         fit = autonomics::fits(  object),
       coefs = autonomics::coefs( object, fit = fit),
    combiner = '|', 
     verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    if (is.null(fit))  return(object)
    assert_is_subset(fit,   autonomics::fits(  object))
    assert_is_subset(coefs, autonomics::coefs( object, fit = fit))
    assert_scalar_subset(combiner, c('|', '&'))
    assert_is_a_bool((verbose))
# Order
    effectmat <- autonomics::effectmat( object, fit = fit, coef = coefs)
    if (verbose)   cmessage("\t\tt-order features on: %s (%s)", 
                            paste0(fit,   collapse = ', '), 
                            paste0(coefs, collapse = ', '))
    if (combiner == '|')  idx <- order(rowMaxs(abs(effectmat)), decreasing = TRUE)
    if (combiner == '&')  idx <- order(rowMins(abs(effectmat)), decreasing = TRUE)
# Return
    object[idx, ]
}


#' @rdname extract_coef_features
#' @export
.extract_n_features <- function(
      object, 
       coefs, 
    combiner = '|', 
           n, 
         fit = fits(object)[1],
     verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    assert_positive_number(n)
# Filter
    object %<>% order_on_effect(fit = fit, coefs = coefs, combiner = combiner, verbose = FALSE)  # dimred
    if (fit %in% LINMOD_ENGINES){
        object %<>% order_on_p(     fit = fit, coefs = coefs, combiner = combiner, verbose = FALSE)  # linmod
    }
    n %<>% min(nrow(object))
    idx <- c(rep(TRUE, n), rep(FALSE, nrow(object)-n))
    n0 <- length(idx)
    n1 <- sum(idx, na.rm = TRUE)
    if (verbose & n1<n0){
        combiner <- paste0(' ', combiner, ' ')
        y <- paste0(coefs, collapse = combiner)
        cmessage('\t\t\tRetain %d/%d features: p(%s) or effect(%s) in best %d', n1, n0, y, y, n)
    }
# Return
    object[idx, ]
}


#' Extract coefficient features
#' @param object      SummarizedXExperiment
#' @param fit         subset of fits(object)
#' @param coefs       subset of coefs(object)
#' @param combiner    '|' or '&': how to combine multiple fits/coefs
#' @param p           p threshold
#' @param fdr         fdr threshold
#' @param effectsize  effectsize threshold
#' @param sign        effect sign
#' @param n           number of top features (Inf means all)
#' @param verbose     TRUE or FALSE
#' @return SummarizedExperiment
#' @examples
#' # Read and Fit
#'     file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#'     object <- read_metabolon(file)
#'     object %<>% fit_limma()
#'     fdt(object) %<>% add_adjusted_pvalues('fdr')
#' # Single coef
#'     object0 <- object
#'     object %<>% .extract_p_features(         coefs = 't1-t0', p = 0.05)
#'     object %<>% .extract_fdr_features(       coefs = 't1-t0', fdr = 0.05)
#'     object %<>% .extract_effectsize_features(coefs = 't1-t0', effectsize = 1)
#'     object %<>% .extract_sign_features(      coefs = 't1-t0', sign = -1)
#'     object %<>% .extract_n_features(         coefs = 't1-t0', n = 1)
#'     object <- object0
#'     object %<>%  extract_coef_features(
#'                    coefs = 't1-t0', p = 0.05, fdr = 0.05, effectsize = 1, sign = -1, n = 1)
#' # Multiple coefs
#'     object <- object0
#'     object %<>% .extract_p_features(         coefs = c('t1-t0', 't2-t0'), p = 0.05)
#'     object %<>% .extract_fdr_features(       coefs = c('t1-t0', 't2-t0'), fdr = 0.01)
#'     object %<>% .extract_effectsize_features(coefs = c('t1-t0', 't2-t0'), effectsize = 1)
#'     object %<>% .extract_sign_features(      coefs = c('t1-t0', 't2-t0'), sign = -1)
#'     object %<>% .extract_n_features(         coefs = c('t1-t0', 't2-t0'), n = 1)
#'     object <- object0
#'     object %<>%  extract_coef_features(
#'                    coefs = c('t1-t0', 't2-t0'), p = 0.05, fdr = 0.01, effectsize = 1, sign = -1, n = 1)
#' @export
extract_coef_features <- function(  
        object,
           fit = fits(object)[1], 
         coefs = default_coefs(object, fit = fit),
      combiner = '|',
             p = 1, 
           fdr = 1, 
    effectsize = 0, 
          sign = c(-1,+1), 
             n = 4,
       verbose = TRUE
){
# Filter
    if (fit %in% LINMOD_ENGINES){
        fdt(object) %<>% add_adjusted_pvalues('fdr', fit = fit, coefs = coefs)
        object %<>% .extract_p_features(  coefs = coefs,   p = p,   fit = fit, combiner = combiner, verbose = verbose)
        object %<>% .extract_fdr_features(coefs = coefs, fdr = fdr, fit = fit, combiner = combiner, verbose = verbose)
    }
    object %<>% .extract_effectsize_features(coefs = coefs,  effectsize = effectsize, fit = fit, combiner = combiner, verbose = verbose)
    object %<>% .extract_sign_features(      coefs = coefs,        sign = sign,       fit = fit, combiner = combiner, verbose = verbose)
    object %<>% .extract_n_features(         coefs = coefs,           n = n,          fit = fit, combiner = combiner, verbose = verbose)
# Return
    object
}



format_coef_vars <- function(
    object, 
       fit = fits(object)[1],
      coef = default_coefs(object, fit = fit)[1]
){
    sep <- guess_fitsep(fdt(object))
    effectvars <- effectvar(object, coef = coef, fit = fit)
    pvars      <- pvar(     object, coef = coef, fit = fit)
    fdrvars    <- fdrvar(   object, coef = coef, fit = fit)
    for (var in c(effectvars, pvars, fdrvars)){
        fdt(object)[[var]] %<>% formatC(format='e', digits=0)
        fdt(object)[[var]] %<>% as.character()
        fdt(object)[[var]] %<>% paste0(split_extract_fixed(var, sep, 2), ' : ',  
                                       split_extract_fixed(var, sep, 1), ' = ', .)
    }
    object
}

#' Add facetvars
#' @param object  SummarizedExperiment
#' @param fit     string
#' @param coefs   string vector
#' @return  SummarizedExperiment
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file, fit = 'limma')
#' object %<>% add_adjusted_pvalues()
#' fdt(object)
#' fdt(add_facetvars(object))
#' @export
add_facetvars <- function( 
    object, 
       fit = fits(object)[1],
     coefs = default_coefs(object, fit = fit)
){
# Assert
    assert_is_valid_sumexp(object)
    assert_scalar_subset(fit, fits(object))
    assert_is_subset(coefs, autonomics::coefs(object, fit = fit))
# Add
    for (i in seq_along(coefs)){
               pvar <- autonomics::pvar(     object, fit = fit, coef = coefs[i])
             fdrvar <- autonomics::fdrvar(   object, fit = fit, coef = coefs[i])
          effectvar <- autonomics::effectvar(object, fit = fit, coef = coefs[i])
           facetvar <- paste0('facet.', coefs[[i]])
        assert_are_disjoint_sets(facetvar, fvars(object))
        if (!is.null(pvar))            pvalues <- fdt(object)[[     pvar]] %>% formatC(format = 'e', digits = 0) %>% as.character() 
        if (!is.null(fdrvar))        fdrvalues <- fdt(object)[[   fdrvar]] %>% formatC(format = 'e', digits = 0) %>% as.character()
        if (!is.null(effectvar))  effectvalues <- fdt(object)[[effectvar]] %>% round(3)  %>% as.character()
        fdt(object)[[facetvar]] <- 
            if (is.null(pvar)){ sprintf('%s : %s', coefs[[i]], effectvalues)
            } else {            sprintf('%s : %s (%s)', coefs[[i]], fdrvalues, pvalues) 
            }
    }
# Return
    object
}


#==============================================================================
#
#               plot_exprs_per_coef
#                   plot_exprs
#                       .plot_exprs
#
#==============================================================================

.plot_exprs <- function(
    object, assay, geom, x, fill, color, shape, size, alpha, block, linetype, 
    highlight, facet, scales, nrow, ncol, page, labeller, 
    pointsize, jitter, colorpalette, fillpalette, hlevels, 
    title, subtitle, xlab, ylab, theme
){
# Initialize
    medianvalue <- value <- present <- NULL
# Prepare
    xsym        <- sym(x)
    fillsym     <- if (is.null(fill))      quo(NULL) else  sym(fill)
    colorsym    <- if (is.null(color))     quo(NULL) else  sym(color)
    shapesym    <- if (is.null(shape))     quo(NULL) else  sym(shape)
    sizesym     <- if (is.null(size))      quo(NULL) else  sym(size)
    alphasym    <- if (is.null(alpha))     quo(NULL) else  sym(alpha)
    blocksym    <- if (is.null(block))     quo(NULL) else  sym(block)
    linetypesym <- if (is.null(linetype))  quo(NULL) else  sym(linetype)
    plotvars <- 'feature_name'
    if (!is.null(x))          plotvars %<>% c(x)         %>% unique()
    if (!is.null(fill))       plotvars %<>% c(fill)      %>% unique()
    if (!is.null(color))      plotvars %<>% c(color)     %>% unique()
    if (!is.null(shape))      plotvars %<>% c(shape)     %>% unique()
    if (!is.null(size))       plotvars %<>% c(size)      %>% unique()
    if (!is.null(alpha))      plotvars %<>% c(alpha)     %>% unique()
    if (!is.null(block))      plotvars %<>% c(block)     %>% unique()
    if (!is.null(linetype))   plotvars %<>% c(linetype)  %>% unique()
    if (!is.null(highlight))  plotvars %<>% c(highlight) %>% unique()
    if (!is.null(facet))      plotvars %<>% c(facet)     %>% unique()
    plottedsvars <- intersect(plotvars, svars(object))
    plottedfvars <- intersect(plotvars, fvars(object))
    # if (!is.null(x))   object[[x]] %<>% num2char()
    dt <- sumexp_to_longdt(object, assay = assay, svars = plottedsvars, fvars = plottedfvars)
    dt[, medianvalue := median(value, na.rm = TRUE), by = c('feature_id', x)]
    for (facetvar in facet){ 
        names(dt) %<>% stri_replace_first_fixed(facetvar, make.names(facetvar))
        facet %<>% stri_replace_first_fixed(facetvar, make.names(facetvar))
    } # otherwise facet_wrap_paginate thinks `fdr~coef~limma` is a formula
# Initialization
    p <- ggplot(dt) + theme_bw() + xlab(xlab) + ylab(ylab) + ggtitle(title, subtitle = subtitle)
    if (!is.numeric(dt[[x]]))  p <- p + theme(axis.text.x = element_text(angle = 90, hjust = 1))
    if (!is.null(facet))   p <- p + facet_wrap_paginate(facets = facet, 
        scales = scales, nrow = nrow, ncol = ncol, page = page, labeller = labeller)
# Boxplots/Points
    if (geom == 'boxplot'){
        outlier.shape <- if (pointsize==0) NA else 19
        mapping <- aes(x = !!xsym, y = value, fill = !!fillsym)
        p <- p + geom_boxplot(mapping = mapping, outlier.shape = outlier.shape, na.rm = TRUE)
        if (pointsize > 0){
            mapping <- aes(x = !!xsym, y = value)
            position <- position_jitter(width = jitter, height = 0)
            p <- p + geom_jitter(mapping = mapping, position = position, size = pointsize, na.rm = TRUE)
        }
    } else {
        mapping <- aes(x = !!xsym, y = value, color = !!colorsym, shape = !!shapesym, size = !! sizesym, alpha = !! alphasym)
        p <- p + geom_point(mapping = mapping, na.rm = TRUE)
    }
    p <- add_color_scale(p, color, data = dt, palette = colorpalette)
    p <- add_fill_scale( p, fill,  data = dt, palette = fillpalette)
# Lines
    if (!is.null(block)){   
        byvar <- block
        if (!is.null(facet)) byvar %<>% c(facet)
        mapping <- aes(x = !!xsym, y = value, color = !!colorsym, group = !!blocksym, linetype = !!linetypesym, alpha = !!alphasym)
        p <- p + geom_line(mapping = mapping, na.rm = TRUE)      # color = direction
    }
# Highlights (points)
    p %<>% add_highlights(x = x, hl = highlight, geom = geom_point, fixed_color = "darkred")
# Hlines
    if (!is.null(hlevels)){
        mediandt <- unique(dt[, unique(c('feature_id', x, 'medianvalue', facet)), with = FALSE])
        mediandt[, present := FALSE]
        mediandt[get(x) %in% hlevels, present := TRUE]
        mapping <- aes(yintercept = medianvalue, color = !!fill, alpha = present)
        p <- p + geom_hline(data = mediandt, mapping = mapping, linetype = 'longdash') 
    }
# Finish
    if (!is.numeric(dt[[x]])){
        breaks <- unique(dt[[x]])
        if (length(breaks)>50)  breaks <- dt[, .SD[1], by = fill][[x]]
        p <- p + scale_x_discrete(breaks = breaks) + guides(alpha = 'none')
    }
    if (!is.null(theme))  p <- p + theme
    p
}


#' Plot exprs for coef
#' @param object        SummarizedExperiment
#' @param dim          'samples'   (per-sample distribution across features), \cr
#'                     'features' (per-feature distribution across samples ) or 
#'                     'both'        (subgroup distribution faceted per feature)
#' @param assay         string: value in assayNames(object)
#' @param x                     x svar
#' @param geom          'boxplot' or 'point'
#' @param color         color svar: points, lines
#' @param fill          fill svar: boxplots
#' @param shape         shape svar
#' @param size          size svar
#' @param alpha         alpha svar 
#' @param block         group svar
#' @param linetype      linetype svar
#' @param highlight     highlight svar
#' @param combiner     '&' or '|'
#' @param fit          'limma', 'lm', 'lme', 'lmer', 'wilcoxon'
#' @param coefs         subset of coefs(object) to consider in selecting top
#' @param p             fraction: p   cutoff
#' @param fdr           fraction: fdr cutoff
#' @param facet         string: fvar mapped to facet
#' @param n             number of samples (dim = 'samples') or features (dim = 'features' or 'both') to plot
#' @param nrow          number of rows in faceted plot (if dim = 'both)
#' @param ncol          number of cols in faceted plot (if dim = 'both')
#' @param scales        'free_y', 'free'x', 'fixed'
#' @param labeller      string or function
#' @param pointsize     number
#' @param jitter        jitter width (number)
#' @param fillpalette   named character vector: fill palette
#' @param colorpalette  named character vector: color palette
#' @param hlevels       xlevels for which to plot hlines
#' @param title         string
#' @param subtitle      string
#' @param xlab          string
#' @param ylab          string
#' @param theme         ggplot2::theme(...) or NULL
#' @param file          NULL or filepath
#' @param width         inches
#' @param height        inches
#' @param verbose       TRUE or FALSE
#' @param ...           used to maintain depreceated functions
#' @return ggplot object
#' @seealso \code{\link{plot_sample_densities}},
#'          \code{\link{plot_sample_violins}}
#' @examples 
#' # Without limma
#'     file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#'     object <- read_metabolon(file)
#'     plot_exprs(object, block = 'Subject', title = 'Subgroup Boxplots')
#'     plot_exprs(object, dim = 'samples')
#'     plot_exprs(object, dim = 'features', block = 'sample_id')
#' # With limma 
#'     object %<>% fit_limma(block = 'Subject')
#'     plot_exprs(object, block = 'Subject')
#'     plot_exprs(object, block = 'Subject', coefs = c('t1-t0', 't2-t0', 't3-t0'))
#'     plot_exprs_per_coef(object, x = 'Time', block = 'Subject')
#' # Points
#'     plot_exprs(object, geom = 'point', block = 'Subject')
#' # Add highlights
#'     controlfeatures <- c('biotin','phosphate')
#'     fdt(object) %<>% cbind(control = .$feature_name %in% controlfeatures)
#'     plot_exprs(object, dim = 'samples', highlight = 'control')
#' # Multiple pages
#'     plot_exprs(object, block = 'Subject', n = 4, nrow = 1, ncol = 2)
#' @export
plot_exprs <- function(
          object, 
             dim = 'both',
           assay = assayNames(object)[1],
             fit = fits(object)[1],
           coefs = default_coefs(object, fit = fit),
           block = NULL,
               x = default_x(object, dim),
            geom = default_geom(object, x = x, block = block),
           color = x, # points/lines
            fill = x, # boxplots
           shape = NULL,
            size = NULL,
           alpha = NULL, 
        linetype = NULL,
       highlight = NULL, 
        combiner = '|',
               p = 1,
             fdr = 1,
           facet = if (dim=='both')  'feature_id' else NULL,
               n = 4,
            ncol = NULL,
            nrow = NULL,
          scales = 'free_y',
        labeller = 'label_value',
       pointsize = if (is.null(block)) 0 else 0.5,
          jitter = if (is.null(block)) 0.1 else 0,
     fillpalette = make_var_palette(object, fill),
    colorpalette = make_var_palette(object, color),
         hlevels = NULL,
           title = switch(dim, both = x, features = 'Feature Boxplots', samples  =  'Sample Boxplots'),
        subtitle = if (!is.null(fit)) coefs else '',
            xlab = NULL,
            ylab = 'value',
           theme = ggplot2::theme(plot.title = element_text(hjust = 0.5)),
            file = NULL,
           width = 7,
          height = 7,
         verbose = TRUE
){
# Assert
    assert_is_valid_sumexp(object)
    if (nrow(object)==0)      return(ggplot())
    assert_scalar_subset(dim, c('features', 'samples', 'both'))
    assert_scalar_subset(assay, assayNames(object))
    assert_scalar_subset(geom, c('boxplot', 'point'))
                              assert_scalar_subset(x,         c(svars(object), fvars(object)))
    if (!is.null(color))      assert_scalar_subset(color,     c(svars(object), fvars(object)))
    if (!is.null(fill))       assert_scalar_subset(fill,      c(svars(object), fvars(object)))
    if (!is.null(shape))      assert_scalar_subset(shape,     c(svars(object), fvars(object)))
    if (!is.null(size))       assert_scalar_subset(size,      c(svars(object), fvars(object)))
    if (!is.null(block))      assert_scalar_subset(block,     c(svars(object), fvars(object)))
    if (!is.null(linetype))   assert_scalar_subset(linetype,  c(svars(object), fvars(object)))
    if (!is.null(highlight))  assert_scalar_subset(highlight, c(svars(object), fvars(object)))
    if (!is.null(facet))      assert_is_subset(facet,         c(svars(object), fvars(object)))
    if (!is.null(nrow))       assert_is_a_number(nrow)
    if (!is.null(ncol))       assert_is_a_number(ncol)
    if (!is.null(facet))      assert_is_subset(scales, c('fixed', 'free', 'free_x', 'free_y'))
# Extract
    if        (dim == 'samples' ){   n %<>% min(ncol(object));  object %<>% extract_samples_evenly(n)
    } else if (dim == 'features'){   n %<>% min(nrow(object));  object %<>% extract_features_evenly(n)
    } else if (dim == 'both'){       n %<>% min(nrow(object))
        if (is.null(coefs)){         object %<>% extract_features_evenly(n) 
        } else {                     object %<>% extract_coef_features(fit = fit, coefs = coefs, combiner = combiner, 
                                                                       p = p, fdr = fdr, n = n, verbose = verbose)
                                     object %<>% add_facetvars(fit = fit, coefs = coefs)
                                     facet %<>% c(sprintf('facet.%s', coefs))
                                     #object %<>% format_coef_vars(sep = sep, fit = fit, coefs = coefs) 
        }
    }
# Plot
    if ( is.null(ncol) &  is.null(nrow)){ ncol <- ceiling(sqrt(n)) }  # https://stackoverflow.com/a/60110740
    if ( is.null(nrow)                 ){ nrow <- ceiling(n/ncol)  }
    if ( is.null(ncol)                 ){ ncol <- ceiling(n/nrow)  }
    npages <- if (dim == 'samples' ) 1  else  ceiling(nrow(object) / nrow / ncol)
    if (!is.null(file))   pdf(file, width = width, height = height)
    for (i in seq_len(npages)){
        p <- .plot_exprs(
                   object,
                    assay = assay,                    geom = geom,
                        x = x,                        fill = fill,
                    color = color,                   shape = shape,
                     size = size,                    alpha = alpha, 
                    block = block,                linetype = linetype,
                highlight = highlight,               facet = facet,     
                   scales = scales,                   nrow = nrow,
                     ncol = ncol,                     page = i,
                 labeller = labeller,          pointsize   = pointsize,  
                   jitter = jitter, 
             colorpalette = colorpalette,      fillpalette = fillpalette, 
                  hlevels = hlevels,                 title = title,
                 subtitle = subtitle,
                     xlab = xlab,                     ylab = ylab,
                    theme = theme
        )
        if (npages>1)  print(p)
    }
    if (!is.null(file)){ dev.off(); file  
    } else {             p }
}



#' @rdname plot_exprs
#' @export
plot_sample_boxplots <- function(
    object, 
    fill = if ('subgroup' %in% svars(object)) 'subgroup' else 'sample_id', 
    n = min(ncol(object), 16),
    ...
){
    plot_exprs(object, dim = 'samples', fill = fill, n = n, ...)
}

#' @rdname plot_exprs
#' @export
plot_feature_boxplots <- function(object, ...){
    plot_exprs(object, dim = 'features', ...)
}

#' Plot exprs per coef
#' @param object        SummarizedExperiment
#' @param x                     x svar
#' @param geom          'boxplot' or 'point'
#' @param block             group svar
#' @param fit          'limma', 'lm', 'lme', 'lmer', 'wilcoxon'
#' @param coefs         subset of coefs(object) to consider in selecting top
#' @param orderbyp      TRUE or FALSE
#' @param title         string
#' @param subtitle      string
#' @param n             number
#' @param nrow          number of rows in faceted plot
#' @param ncol          number of cols in faceted plot
#' @param theme         ggplot2::theme(...) or NULL
#' @return ggplot object
#' @seealso \code{\link{plot_sample_densities}},
#'          \code{\link{plot_sample_violins}}
#' @examples 
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' object %<>% fit_limma()
#' object %<>% pls(by = 'subgroup')
#' object %<>% pls(by = 'Diabetes')
#' object %<>% pls(by = 'Subject')
#' plot_exprs_per_coef(object)
#' plot_exprs_per_coef(object, orderbyp = TRUE)
#' plot_exprs_per_coef(object, fit = 'pls1', block = 'Subject')
#' @export
plot_exprs_per_coef <- function(  
      object, 
         fit = fits(object)[1],
       coefs = default_coefs(object, fit = fit),
           x = default_x(object),
       block = NULL,
        geom = default_geom(object, x, block = block),
    orderbyp = FALSE,
       title = x,
    subtitle = default_subtitle(fit, x, coefs),
           n = 1,
        nrow = 1, 
        ncol = NULL, 
       theme = ggplot2::theme( legend.position = 'bottom', 
                                  legend.title = element_blank(), 
                                    plot.title = element_text(hjust = 0.5), 
                                 plot.subtitle = element_text(hjust = 0.5) )
){
    assert_is_valid_sumexp(object)
    if (orderbyp){
        idx <- order(vapply(coefs, function(x)  min(pmat(object, fit = fit, coef = x)), numeric(1)))
        coefs %<>% extract(idx)
        if (length(x)        > 1)         x %<>% extract(idx)
        if (length(geom)     > 1)      geom %<>% extract(idx)
        if (length(title)    > 1)     title %<>% extract(idx)
        if (length(subtitle) > 1)  subtitle %<>% extract(idx)
    }
    grobs <- mapply(plot_exprs, x = x, 
                             geom = geom,
                              fit = fit,
                            coefs = coefs, 
                            title = title,
                         subtitle = subtitle,
                         MoreArgs = list(object = object, block = block, n = n, nrow = n, theme = theme), 
                         SIMPLIFY = FALSE)
    gridExtra::grid.arrange(grobs = grobs, nrow = nrow)
}


default_x <- function(object, dim = 'both'){
    if (dim == 'features')                              return('feature_id')
    if (dim == 'samples')                               return('sample_id')
    if (dim == 'both' & 'subgroup' %in% svars(object))  return('subgroup')
                                                        return('sample_id')
}

default_subtitle <- function(fit, x, coefs){
    y <- coefs
    idx <- !grepl('(limma|lm|lme|lmer|wilcoxon)', fit)
    y[idx] <- fit[idx]
    y
}


#' Default geom
#' @param object SummarizedExperiment
#' @param x      svar
#' @param block  svar or NULL
#' @return character vector
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' object$Age <- runif(min = 20, max = 60, n = ncol(object))
#' svars(object)
#' default_geom(object, x = 'Age')
#' default_geom(object, x = c('Age', 'Diabetes'))
#' default_geom(object, x = c('Age', 'Diabetes'), block = 'Subject')
#' @export
default_geom <- function(object, x, block = NULL){
    if (all(x %in% fvars(object)))  return(set_names(rep('boxplot', length(x)), names(x)))
    if (!is.null(block))            return(set_names(rep('point',   length(x)), names(x)))
    sdt0 <- sdt(object)[, x, with = FALSE]
    y <- vapply(sdt0, class, character(1))
    y %<>% unname()
    y <- c(numeric = 'point', factor = 'boxplot', character = 'boxplot')[y]
    names(y) <- x
    y
}


#=============================================================================
#
#                 plot_feature_points()
#
#=============================================================================

#' Plot features
#' @param object      SummarizedExperiment
#' @param subgroup    subgroup svar
#' @param block       block svar
#' @param x           svar mapped to x
#' @param color       svar mapped to color
#' @param group       svar mapped to group
#' @param facet       svar mapped to facets
#' @param nrow        number of rows
#' @param scales      'free_y' etc. 
#' @param ...         mapped aesthetics
#' @param palette     color palette (named character vector)
#' @param fixed       fixed aesthetics
#' @param theme       ggplot theme specifications
#' @return ggplot object
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file, fit = 'limma')
#' idx <- order(fdata(object)$`p~t1-t0~limma`)[1:9]
#' object %<>% extract(idx, )
#' plot_sample_boxplots(  object)
#' plot_feature_boxplots( object)
#' plot_sample_boxplots(object, x = 'Time')
#' plot_subgroup_points(  object, subgroup = 'Time')
#' plot_subgroup_points(  object, subgroup = 'Time', block = 'Subject')
#' @export
plot_subgroup_points <- function(
    object, subgroup = 'subgroup', block = NULL, x = subgroup, 
    color = subgroup, group = block, 
    facet = 'feature_id', nrow = NULL, scales = 'free_y', ...,
    palette = NULL,
    fixed = list(na.rm=TRUE),  #element_text(angle=90, vjust=0.5),
    theme = list(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
){
    dt <- sumexp_to_longdt(object, svars = svars(object), fvars = fvars(object))
    value <- NULL
    xsym     <- if (is.null(x))     quo(NULL) else sym(x)
    colorsym <- if (is.null(color)) quo(NULL) else sym(color)
    groupsym <- if (is.null(group)) quo(NULL) else sym(group)
    blocksym <- if (is.null(block)) quo(NULL) else sym(block)
    
    p <- plot_data(  dt, 
                   geom = geom_point, 
                      x = !!xsym,
                      y = value,
                  color = !!colorsym, 
                  group = !!groupsym, 
                       ..., 
                palette = palette,
                  fixed = fixed )
    if (!is.null(block))  p <- p + geom_line()
    p <- p + facet_wrap(facets = facet, scales = scales, nrow = nrow)
    p <- p + do.call(ggplot2::theme, {{theme}})
    p
}


#=========================================================
#
#           plot_venn_heatmap
#           plot_venn
#           plot_contrast_venn
#               list2mat
#
#=========================================================


#' list to matrix
#' @param x list
#' @return matrix
#' @examples
#' x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
#' list2mat(x)
#' @export
list2mat <- function(x){
# Assert
    assert_is_list(x)
    for (i in seq_along(x)){
        x[[i]] %<>% extract(!is.na(.))
        x[[i]] %<>% extract(. != '')
    }
# Convert    
    uni <- unique(Reduce(union, x))
    mat <- matrix(0, nrow = length(uni), ncol = length(x), dimnames = list(uni, names(x)))
    for (i in seq_along(x))  mat[x[[i]], i] <- 1
    mat
}


#' Plot venn heatmap
#' @param x list
#' @examples
#' x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
#' plot_venn_heatmap(x)
#' @export
plot_venn_heatmap <- function(x){
    if (!requireNamespace('pheatmap', quietly = TRUE)){
        message("`BiocManager::install('pheatmap')`")
        return(NULL)
    }
    assert_is_list(x)
    x %<>% list2mat()
    pctmat <- matrix(0, nrow = ncol(x), ncol = ncol(x), dimnames = list(colnames(x), colnames(x)))
    nmat   <- matrix(0, nrow = ncol(x), ncol = ncol(x), dimnames = list(colnames(x), colnames(x)))
    for (cl1 in colnames(x)){
    for (cl2 in colnames(x)){
        set1 <- rownames(x)[x[, cl1]==1]
        set2 <- rownames(x)[x[, cl2]==1]
        nmat[  cl2, cl1] <- length(intersect(set1, set2))
        pctmat[cl2, cl1] <- length(intersect(set1, set2)) / min(length(set1), length(set2))
        pctmat[cl1, cl2] <- length(intersect(set1, set2)) / min(length(set2), length(set2))
    }
    }
    pheatmap::pheatmap(pctmat, cluster_rows = FALSE, cluster_cols = FALSE, display_numbers = nmat)
}


#' Plot venn
#' @param x list
#' @examples
#' x <- list(roundfruit = c('apple', 'orange'), redfruit = c('apple', 'strawberry'))
#' plot_venn(x)
#' @export
plot_venn <- function(x){
    assert_is_list(x)
    limma::vennDiagram(list2mat(x))
}


#' Plot contrast venn
#' @param issig  matrix(nrow, ncontrast): -1 (down), +1 (up)
#' @param colors NULL or colorvector
#' @return nothing returned
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' object %<>% fit_wilcoxon(~ subgroup, block = 'Subject')
#' object %<>% fit_limma(   ~ subgroup, block = 'Subject', codingfun = contr.treatment.explicit)
#' isfdr <- is_sig(object, contrast = 't3-t0', quantity = 'p', fit = fits(object))
#' plot_contrast_venn(isfdr)
#' @export
plot_contrast_venn <- function(issig, colors = NULL){
    assert_is_matrix(issig)
    layout(matrix(c(1,2), nrow=2))
    vennDiagram(issig, include='up',   mar = rep(0,4), show.include=TRUE, circle.col = colors)
    vennDiagram(issig, include='down', mar = rep(0,4), show.include=TRUE, circle.col = colors)
}

#' Plot binary matrix
#' @param mat matrix
#' @examples 
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' mat <- sdt(object)[, .(Subject, subgroup)]
#' mat$present <- 1
#' mat %<>% data.table::dcast(Subject ~ subgroup, value.var  = 'present', fill = 0)
#' mat %<>% dt2mat()
#' plot_matrix(mat)
#' @return no return (base R plot)
#' @export
plot_matrix <- function(mat){
    nr <- nrow(mat)
    nc <- ncol(mat)
    values <- unique(c(mat)) %>% setdiff(0) %>% as.character()
    colors <- make_colors(values)
    colors %<>% unname()
    colors %<>% c('white', .)
    
    image(t(mat %>% extract(seq(nrow(.), 1), )), col = colors,  axes = FALSE)
    axis(side = 1, labels =     colnames(mat),  at = seq(0, by = 1, length.out = nc)/(nc-1), las = 1, tick = FALSE)
    axis(side = 2, labels = rev(rownames(mat)), at = seq(0, by = 1, length.out = nr)/(nr-1), las = 1, tick = FALSE)
    box()
    par(mar = c(5,5,4,2))
    abline(h = (0.5:(nr-0.5))/(nr-1), v = (0.5:(nc-0.5))/(nc-1), col = 'gray30')
}

#' Plot model 
#' @param object ´SummarizedExperiment
#' @param codingfun  factor coding function
#' \itemize{
#'     \item contr.treatment:          intercept = y0,     coefi = yi - y0
#'     \item contr.treatment.explicit: intercept = y0,     coefi = yi - y0
#'     \item code_control:             intercept = ymean,  coefi = yi - y0
#'     \item contr.diff:               intercept = y0,     coefi = yi - y(i-1)
#'     \item code_diff:                intercept = ymean,  coefi = yi - y(i-1)
#'     \item code_diff_forward:        intercept = ymean,  coefi = yi - y(i+)
#'     \item code_deviation:           intercept = ymean,  coefi = yi - ymean (drop last)
#'     \item code_deviation_first:     intercept = ymean,  coefi = yi - ymean (drop first)
#'     \item code_helmert:             intercept = ymean,  coefi = yi - mean(y0:(yi-1))
#'     \item code_helmert_forward:     intercept = ymean,  coefi = yi - mean(y(i+1):yp)
#' }
#' @return ggplot
#' @examples
#' file <- system.file('extdata/billing19.proteingroups.txt', package = 'autonomics')
#' subgroups <- paste0(c('E00', 'E01', 'E02', 'E05', 'E15', 'E30', 'M00'), '_STD')
#' object <- read_maxquant_proteingroups(file, subgroups = subgroups)
#' object$subgroup %<>% substr(1,3)
#' plot_design(object)
#' @export
plot_design <- function(object, codingfun = contr.treatment.explicit){
    coef <- y <- yend <- NULL
    designmat <- create_design(object, subgroupvar = 'subgroup', drop = TRUE, codingfun = codingfun)
    rownames(designmat) <- object$subgroup
    designmat %<>% unique()
    subgroups <- subgroup_levels(object)
    designmat %<>% extract(subgroups, )
    coefs <- colnames(designmat)
    ymat <- matrix(seq_along(subgroups), nrow = ncol(designmat), ncol = 1)
    betamat <- solve(designmat) %*% ymat
    betamat[1,1] <- 1 # not strictly required, but plot is nicer if Intercept 
                      # is 1 unit long (in MASS:contr.sdif it gets much longer, 
                      # I think to maintain orthogonality of design)
    plotdt <- data.table(subgroup = subgroups, 
                         coef     = coefs, 
                         x        = seq_along(subgroups),
                         yend     = seq_along(subgroups),
                         y        = seq_along(subgroups) - betamat[, 1])
    arrow <- arrow(length = unit(0.15, 'in'))
    
    ggplot(plotdt) + theme_bw() + 
    geom_segment(aes(x = x-0.05, xend = x+0.05, y = yend, yend = yend)) + 
    geom_text(   aes(x = x+0.1, y = yend, label = subgroup), hjust = 0) + 
    geom_segment(aes(x = x, xend = x, y = y, yend = yend), arrow = arrow) + 
    geom_label(  aes(x = x, y = y + (yend-y)/2, label = coef), parse = TRUE) +
    xlab(NULL) + ylab(NULL) + 
    theme_void()
    # theme(axis.text = element_blank(), 
    #       panel.grid.major.x = element_blank(), 
    #       panel.grid.minor.x = element_blank())
}


#' @rdname fcor
#' @export
mdsplot <- function(distmat, title = NULL){
    out <- stats::cmdscale(distmat)
    out %<>% mat2dt('id')
    names(out )[-1] <- c('mds1', 'mds2')
    out$group <- 'group0'
    sep <- guess_sep(out$id)
    if (!is.null(sep)){
        n <- autonomics::nfactors(out$id, sep = sep)
        if (n>1)  out$group <- out$id %>% split_extract_fixed(sep, seq_len(n-1))
    }
    
    mds1 <- mds2 <- group <- NULL
    ggplot(out, aes(x = mds1, y = mds2, color = group)) + 
    geom_point(shape = 15, size = 3) + 
    theme_bw() + 
    ggtitle(title)
}

#' Feature correlations/distances
#' @param object  SummarizedExperiment
#' @param method 'cor', 'euclidian', etc
#' @param distmat distance matrix
#' @param title   NULL or string
#' @param verbose TRUE or FALSE
#' @return matrix
#' @examples
#' # Correlations
#'     object <- twofactor_sumexp()
#'     scor(object)               %>%  pheatmap::pheatmap()
#'     fcor(object)               %>%  pheatmap::pheatmap()
#' # Distances
#'     sdist(object, 'cor')       %>% mdsplot('samples: cor')
#'     sdist(object, 'euclidian') %>% mdsplot('samples: euclidian')
#'     fdist(object, 'cor')       %>% mdsplot('features: cor')
#'     fdist(object, 'euclidian') %>% mdsplot('features: euclidian')
#' @export
fcor <- function(object, verbose = TRUE){
# Assert
    assert_is_valid_sumexp(object)
    if (!requireNamespace('propagate', quietly = TRUE)){
        message("\t\t\tBiocManager::install('propagate'). Then re-run.") 
        return(NULL) 
    }
    if (verbose)   cmessage('\t\tFeature correlations')
    idx <- rowAlls(!is.na(values(object)))
    object %<>% extract(idx, )
    if (verbose)   cmessage('\t\t\tUse %d/%d NA-free features', sum(idx), length(idx))
# Compute
    if (nrow(object) < 500){  cormat <- stats::cor(t(values(object)))
    } else {                  cormat <- propagate::bigcor(t(values(object)))  # ff_matrix
                              cormat %<>% extract(1:nrow(.), 1:ncol(.))  }    # matrix
                                # bigcor warning : In split.default(1:NCOL, GROUP)
                                # data length is not a multiple of split variable
                                # But cor(.) gives same results, so nothing to worry
                                # cormat2 <- cor(t(values(object)))
                                # all(cormat2-cormat < 1e-10)           
# Return
    rownames(cormat) <- colnames(cormat) <- fnames(object)
    cormat
}

#' @rdname fcor
#' @export
scor <- function(object, verbose = TRUE){
# Assert
    assert_is_valid_sumexp(object)
    if (!requireNamespace('propagate', quietly = TRUE)){
        message("\t\t\tBiocManager::install('propagate'). Then re-run.") 
        return(NULL) 
    }
    if (verbose)   cmessage('\t\tSample correlations')
    idx <- rowAlls(!is.na(values(object)))
    object %<>% extract(idx, )
    if (verbose)   cmessage('\t\t\tUse %d/%d NA-free features', sum(idx), length(idx))
# Compute
    if (ncol(object) < 500){  cormat <- stats::cor(values(object))
    } else {                  cormat <- propagate::bigcor(values(object))  # ff_matrix
                              cormat %<>% extract(1:nrow(.), 1:ncol(.))  }    # matrix
                                # bigcor warning : In split.default(1:NCOL, GROUP)
                                # data length is not a multiple of split variable
                                # But cor(.) gives same results, so nothing to worry
                                # cormat2 <- cor(t(values(object)))
                                # all(cormat2-cormat < 1e-10)           
# Return
    rownames(cormat) <- colnames(cormat) <- snames(object)
    cormat
}


#' @rdname fcor
#' @export
fdist <- function(object, method = 'cor'){
    if (method == 'cor')  return(as.dist(1-fcor(object)))  # cor
    dist(values(object), method = method)        # euclidian etc.
}

#' @rdname fcor
#' @export
sdist <- function(object, method = 'cor'){
    if (method == 'cor')  return(as.dist(1-scor(object)))  # cor
    dist(t(values(object)), method = method)        # euclidian etc.
}


#' twofactor sumexp
#' @return SummarizedExperiment
#' @export
twofactor_sumexp <- function(){
    set.seed(31)
    mat <- rbind(  matrix(c(rep(-4,6), rep(+4,6)),                       nrow = 50, ncol = 12, byrow = TRUE) ,
                   matrix(c(rep(+4,6), rep(-4,6)),                       nrow = 50, ncol = 12, byrow = TRUE) ,
                   matrix(c(rep(-4,3), rep(+4,3), rep(-4,3), rep(+4,3)), nrow = 50, ncol = 12, byrow = TRUE) ,
                   matrix(c(rep(+4,3), rep(-4,3), rep(+4,3), rep(-4,3)), nrow = 50, ncol = 12, byrow = TRUE) )
    mat <- mat + matrix(rnorm(2400), nrow = 200, ncol = 12, byrow = TRUE)
    colnames(mat) <- c( sprintf('A.WT.R%d', 1:3), sprintf('A.KD.R%d', 1:3),
                        sprintf('B.WT.R%d', 1:3), sprintf('B.KD.R%d', 1:3) )
    rownames(mat) <- sprintf('gene%03d', seq_len(nrow(mat)))
    object <- SummarizedExperiment::SummarizedExperiment(list(exprs = mat))
    fdt(object)$feature_id <- fnames(object)
    sdt(object)$sample_id <- snames(object)
    object$subgroup <- substr(object$sample_id, 1, 4)
    object
}


#' Cluster features
#' @param object     SummarizedExperiment
#' @param distmat    distance matrix
#' @param method    'cmeans'
#' @param k          number of clusters
#' @param verbose    TRUE or FALSE
#' @param plot       TRUE or FALSE
#' @param label      fvar
#' @param alpha      fraction
#' @param nrow       number
#' @param ncol       number
#' @return SummarizedExperiment
#' @examples
#' object <- twofactor_sumexp()
#' distmat <- fdist(object)
#' fcluster(object)                                                   # membership-based colors
#' fcluster(object, distmat)                                          # silhouette-based colors
#' fcluster(object, distmat, method = c('cmeans', 'hclust', 'pamk'))  # more methods
#' @return SummarizedExperiment
#' @export
fcluster <- function(
    object, 
    distmat = NULL, 
    method = 'cmeans', 
         k = 2:10,
   verbose = TRUE,
      plot = TRUE,
     label = if ('gene' %in% fvars(object)) 'gene' else 'feature_id',
     alpha = 1, 
      nrow = if (length(method)>1) length(method) else NULL, 
      ncol = NULL
){
# Assert    
    assert_is_valid_sumexp(object)
    assert_is_subset(method, c('cmeans', 'hclust', 'pamk'))
    if (any(method!='cmeans'))  assert_is_all_of(distmat, 'dist')
    assert_is_numeric(k)
    clvars <- fvars(object) %>% extract(stri_detect_fixed(., 'CLUS') | stri_detect_fixed(., 'SILH'))
    for (col in clvars)  fdt(object)[[col]] <- NULL
    full <- NULL
# Scale
    # if (verbose)  message(spaces(14), 'Distmat = 1-cormat')
    if (verbose)  message(spaces(8), 'Cluster')
    object %<>% extract(, order(colnames(.)))
    assays(object)$fscale <- fscale(values(object))
# Cluster
    if ('cmeans' %in% method)  object %<>% fcluster_cmeans(distmat, k = k, label = label, verbose = verbose)
    if ('hclust' %in% method)  object %<>% fcluster_hclust(distmat, k = k, label = label, verbose = verbose)
    if (  'pamk' %in% method)  object %<>% fcluster_pamk(  distmat, k = k, label = label, verbose = verbose)
# Plot, Return
    if (plot)  print(fclusplot(object, label = label, alpha = alpha, nrow = nrow, ncol = ncol))
    invisible(object)
}


cluslabel <- function(clusdt, label){
    n <- NULL
    clusvar <- names(clusdt) %>% extract(stri_endswith_fixed(., 'CLUS'))
    silhvar <- names(clusdt) %>% extract(stri_endswith_fixed(., 'SILH'))
    orderdt <- clusdt[, .( feature_id =   feature_id[which.max(get(silhvar))], 
                                label =   get(label)[which.max(get(silhvar))],
                           silhouette = get(silhvar)[which.max(get(silhvar))],
                                    n = .N ), 
                       by = clusvar ]
    orderdt <- orderdt[rev(order(silhouette))]
    orderdt[, label := paste0(label, ' (n=', n, ')')]
    clusdt[[clusvar]] %<>% factor(orderdt[[clusvar]])
    levels(clusdt[[clusvar]]) <- orderdt$label
    if (label!= 'feature_id')  clusdt[, c(label) := NULL]
    clusdt
}


fcluster_cmeans <- function(object, distmat, k, label, verbose){
# Assert
    if (!requireNamespace('e1071', quietly = TRUE)){
        message("BiocManager::install('e1071'). Then re-run")
        return(object)  
    }
# Find k
    mat <- assays(filter_full_features(object))$fscale
    if (verbose)  cmessage('%scmeans',  spaces(14))
    if (length(k)>1){
        cmeanseps <- function(kay)  e1071::cmeans(mat, centers = kay, method = "cmeans", m = 1.25, iter.max = 300)$withinerror
        eps <- vapply(k, cmeanseps, numeric(1))
        names(eps) <- sprintf('k=%d', k)
        eps <- (eps-min(eps)) / (max(eps)-min(eps))  # scale from 0 to 1
        eps <- c(0, diff(eps))                       # slope
        eps <- c(0, diff(eps))                       # change in slope
        k <- k[which.max(eps)-1]
    }
# Cmeans
    out <- e1071::cmeans(mat, centers = k, method = "cmeans", m = 1.25)
    clusdt <- data.table(  feature_id = names(out$cluster), 
                              cluster = out$cluster,
                           silhouette = if (is.null(distmat)){ rowMaxs(out$membership)
                                        } else {   silhouette(out$cluster, distmat)[, 3] } )
    setnames(clusdt, 'cluster',    'cmeansCLUS')
    setnames(clusdt, 'silhouette', 'cmeansSILH')
    if (label != 'feature_id'){  labeldt <- fdt(object)[, c('feature_id', label), with = FALSE]
                                 clusdt %<>% merge(labeldt, by = 'feature_id')  }
    clusdt %<>% cluslabel(label)
    object %<>% merge_fdt(clusdt)
    object
}

fcluster_hclust <- function(object, distmat, k, label, verbose){
# Assert
    if (is.null(distmat)){
        message("distmat is NULL - return object unchanged")
        return(object)
    }
# Cluster    
    if (verbose)  cmessage('%shclust', spaces(14))
    if (length(k)>1){
        out <- hclust(distmat)
        silfun <- function(kay)  mean(silhouette(cutree(out, k = kay), distmat)[, 3])
        sil <- vapply(k, silfun, numeric(1))
        names(sil) <- sprintf('k=%d', k)
        k <- k[which.max(sil)]
    }
    out <- hclust(distmat)
    clusdt <- data.table( feature_id = names(cutree(out, k = k)) , 
                             cluster = cutree(out, k = k), 
                          silhouette = silhouette(cutree(out, k = k), distmat)[, 3] )
    setnames(clusdt, 'cluster',    'hclustCLUS')
    setnames(clusdt, 'silhouette', 'hclustSILH')
    if (label != 'feature_id'){  labeldt <- fdt(object)[, c('feature_id', label), with = FALSE]
                                  clusdt %<>% merge(labeldt, by = 'feature_id') }
    clusdt %<>% cluslabel(label)
    object %<>% merge_fdt(clusdt)
    object
}


fcluster_pamk <- function(object, distmat, k, label, verbose){
# Assert
    if (is.null(distmat)){
        message("distmat is NULL - return object unchanged")
        return(object)
    }
# Cluster
    if (verbose)  cmessage('%spamk', spaces(14))
    if (length(k)>1){
        silfun <- function(kay)  mean(silhouette(pam(distmat, k = kay), distmat)[, 3])
        sil <- vapply(k, silfun, numeric(1))
        names(sil) <- sprintf('k=%d', k)
        k <- k[which.max(sil)]
    }
    out <- pam(distmat, k = k)             # fpc::pamk(distmat, krange = k)
    clusdt <- data.table( feature_id = names(out$clustering), 
                             cluster =       out$clustering,    # outPAMK$silinfo$widths[, 'sil_width']
                          silhouette = silhouette(out, distmat)[, 3] )
    setnames(clusdt, 'cluster',    'pamkCLUS')
    setnames(clusdt, 'silhouette', 'pamkSILH')
    if (label != 'feature_id'){   labeldt <- fdt(object)[, c('feature_id', label), with = FALSE]
                                   clusdt %<>% merge(labeldt, by = 'feature_id')  }
    clusdt %<>% cluslabel(label)
    object %<>% merge_fdt(clusdt)
    object
}


filter_full_features <- function(object, verbose = TRUE){
    full <- NULL
    fdt(object)$full <- !matrixStats::rowAnyNAs(values(object))
    obj <- filter_features(object, full == TRUE, verbose = verbose)
    obj$full <- NULL
    obj
}


CLUSCOLORS <- c(#"#FF0000", "#FF1800", "#FF3000", "#FF4800", "#FF6000", "#FF7800", "#FF8F00",
          #"#FFA700", "#FFBF00", "#FFD700", 
          "#FFEF00", "#F7FF00", "#DFFF00", "#C7FF00",
          "#AFFF00", "#97FF00", "#80FF00", "#68FF00", "#50FF00", "#38FF00", "#20FF00",
          "#08FF00", "#00FF10", "#00FF28", "#00FF40", "#00FF58", "#00FF70", "#00FF87",
          "#00FF9F", "#00FFB7", "#00FFCF", "#00FFE7", "#00FFFF", "#00E7FF", "#00CFFF",
          "#00B7FF", "#009FFF", "#0087FF", "#0070FF", "#0058FF", "#0040FF", "#0028FF",
          "#0010FF", "#0800FF", "#2000FF", "#3800FF", "#5000FF", "#6800FF", "#8000FF",
          "#9700FF", "#AF00FF", "#C700FF", "#DF00FF", "#F700FF", "#FF00EF", "#FF00D7",
          "#FF00BF", "#FF00A7", "#FF008F", "#FF0078", "#FF0060", "#FF0048", "#FF0030",
          "#FF0018")


clustermethods <- function(object){
    fvars(object) %>% extract(stri_detect_fixed(., 'CLUS')) %>% split_extract_fixed('CLUS', 1)
}

fclusplot <- function(
    object, 
    label = if ('gene' %in% fvars(object)) 'gene' else 'feature_id' , 
    alpha = 1, 
     nrow = if (length(clustermethods(object))>1)  length(clustermethods(object))  else NULL,
     ncol = NULL

){
# Initialize
    method <- clus <- exemplar <- silh <- silhcut <- NULL
# plotdt and colors
    clusvars <- fvars(object) %>% extract(stri_detect_fixed(., 'CLUS'))
    silhvars <- fvars(object) %>% extract(stri_detect_fixed(., 'SILH'))
    methods <- clusvars %>% stri_replace_first_fixed('CLUS', '')
    plotdt <- sumexp_to_longdt(object, assay = 'fscale', fvars = c(label, clusvars, silhvars))
    cols <- c('subgroup', 'sample_id', 'feature_id', label, 'value')
    cols %<>% unique()
    cols %<>% intersect(names(plotdt))
    plotdt <- rbindlist( lapply( methods, function(meth){
                                            clvar <- paste0(meth, 'CLUS')
                                            sivar <- paste0(meth, 'SILH')
                                            retdt <- plotdt[, c( cols, clvar , sivar ), with = FALSE ]
                                            setnames(retdt, c(clvar, sivar), c('clus', 'silh'))
                                            retdt[, method := meth]
                                            retdt } ))
    plotdt %<>% extract(!is.na(clus))
    #plotdt[, exemplar := get(label)[silh == max(silh)][1], by = c('method', 'clus')]
    colo <- CLUSCOLORS
    cuts <- seq( min(plotdt$silh)-1e-10, 1, length = length(colo)+1)
    plotdt[ , silhcut := cut(silh, cuts)]
    names(colo) <- levels(plotdt$silhcut)
# Plot
    plotdt <- plotdt[rev(order(silh))]
    clusters <- unique(plotdt$clus)
    meth <- c('cmeans', 'cmeans', 'cmeans', 'hclust', 'hclust', 'hclust', 'pamk', 'pamk', 'pamk')
    tmpdt <- plotdt[, .(cluster = unique(clus)), by = 'method']
    plotlist <- mapply( .fclusplot, meth = tmpdt$method, cl = tmpdt$cluster, 
                    MoreArgs = list(plotdt = plotdt, colo = colo, alpha = alpha), 
                    SIMPLIFY = FALSE )
    if (!requireNamespace('patchwork', quietly = TRUE)){
        message("BiocManager::install('patchwork'). Then re-run")
        return(NULL)
    }
    patchwork::wrap_plots(plotlist, nrow = nrow, byrow = TRUE) + 
    patchwork::plot_layout(axes = 'collect', guides = 'collect')
    #grid.arrange(grobs = plotlist, nrow = length(method), ncol = length(unique(plotdt$clus)))
}

.fclusplot <- function(plotdt, meth, cl, colo, alpha){
    # Dont facet-wrap this into higher-level function!
    # Each facet requires feature_id to be re-ordered based on silhouette
    # This order is different in each facet
    # So it needs to be coded like it is here

    clus <- silh <- silhcut <- method <- sample_id <- value <- NULL
    clusdt <- plotdt[method == meth & clus == cl]
    clusdt <- clusdt[ order(silh) ]
    clusdt[, feature_id := factor(feature_id, unique(feature_id))]
    exemplardt <- clusdt[silh == max(silh)]

    shapescale <- c(16, 17, 15, 3, 7, 8, 4, 5, 6, 9, 10, 11, 12, 13, 14)
    ggplot(clusdt, aes(x = sample_id, y = value, group = feature_id, color = silhcut, shape = subgroup)) +
    theme_bw() + 
    facet_wrap(vars(clus)) + 
    scale_color_manual(values = colo) + 
    scale_shape_manual(values = shapescale) + 
    theme(axis.text.x = element_text(angle = 90), panel.grid = element_blank(), axis.title.x = element_blank()) + 
    guides(color = 'none', shape = guide_legend(override.aes = list(colour = 'black'))) + 
    ylab(unique(clusdt$method)) + 
    geom_line(alpha = alpha) +
    geom_line( data = exemplardt, color = 'white', linewidth = 0.8) + 
    geom_point(data = exemplardt, color = 'white', size = 1.5)
}




is_installed <- function(x){
    ok <- requireNamespace(x, quietly = TRUE)
    if (!ok)  message(sprintf("BiocManager::install('%s'). Then re-run.", x))
    TRUE
}

assert_installed <- function(x){
     assert_engine(  is_installed, x )
}



#' Plot heatmap
#' @param object           SummarizedExperiment
#' @param assay            string: one of assayNames(object)
#' @param fit             'limma', 'lm', 'lme(r)', 'wilcoxon'
#' @param coef             string: one of coefs(object)
#' @param effectsize       number: effectsize filter
#' @param p                number: p    filter
#' @param fdr              number: fdr  filter
#' @param n                number: n filter
#' @param cluster_features TRUE or FALSE
#' @param cluster_samples  TRUE or FALSE
#' @param flabel           string: feature label
#' @param group            sample groupvar
#' @param verbose          TRUE or FALSE
#' @examples
#' file <- system.file('extdata/fukuda20.proteingroups.txt', package = 'autonomics')
#' object <- read_maxquant_proteingroups(file, fit = 'limma')
#' plot_heatmap(object)
#' @export
plot_heatmap <- function( 
              object,
                 fit = fits(object)[1],
                coef = default_coefs(object, fit = fit)[1],
          effectsize = 0,
                   p = 1,
                 fdr = 0.05,
                   n = 100,
               assay = assayNames(object)[1],
    cluster_features = FALSE,
     cluster_samples = FALSE,
              flabel = intersect(c('gene', 'feature_id'), fvars(object))[1], 
               group = 'subgroup', 
             verbose = TRUE
){
# Assert
    assert_is_all_of(object, 'SummarizedExperiment')
    assert_is_subset(assay,         assayNames(object))
    if (!is.null(fit )){ assert_is_a_string(fit);  assert_is_subset(  fit, fits(object))  }
    if (!is.null(coef))  assert_is_a_string(coef)
    if (!is.null(coef))  assert_is_subset(  coef, coefs(object, fit = fit))
    assert_is_a_number(effectsize)
    assert_is_a_number(p)
    assert_is_a_number(fdr)
    assert_is_a_number(n)
    assert_is_a_string(flabel)
    assert_is_subset(  flabel, fvars(object))
    assert_is_subset(group,  svars(object))
    sample_id <- `z-score` <- NULL
# Filter: significant features
    object0 <- object
    if (is.null(coef)){   object %<>% extract_features_evenly(n)
    } else {              object %<>% extract_coef_features(fit = fit, coefs = coef, effectsize = effectsize, p = p, fdr = fdr, n = n) }
# Zscore
    assays(object)[[assay]] %<>% t() %>% scale(center = TRUE, scale = TRUE) %>% t()
    assays(object)[[assay]] %<>% na_to_zero()
# Order features                                # in an edge case one of the groups had no obs
    idx <- rowSds(assays(object)[[assay]]) > 0  # still limma::lmFit produced a p value - limma bug ?
    object %<>% extract(idx, )                  # leads to a 0 variance error in the next line
    if (cluster_features){
      # object %<>% fcluster( verbose = verbose )
      # object %<>% extract(order(fdt(.)$clustorder), )
        idx <- hclust(as.dist(1-cor(t(assays(object)[[assay]]))))$order
        object  %<>% extract(  idx , )                          # order features
    }
    if (!is.null(coef)){
        idx <- effectmat(object, fit = fit, coef = coef)[, 1] < 0; down <- object[idx, ]  # split down/up
        idx <- effectmat(object, fit = fit, coef = coef)[, 1] > 0;   up <- object[idx, ]
        object <- rbind(rev(down), rev(up))
    }
# Add pvalues
    sep <- guess_fitsep(fdt(object))
    if (!is.null(coef)){
             pvar <- paste('p',   coef, fit, sep = sep)
           fdrvar <- paste('fdr', coef, fit, sep = sep)
          pvalues <- fdt(object)[[  pvar]] %>% formatC(format = 'e', digits = 0) %>% as.character() 
        fdrvalues <- fdt(object)[[fdrvar]] %>% formatC(format = 'e', digits = 0) %>% as.character()
        fdt(object)[[flabel]] %<>% paste0('  ', pvalues, '  ', fdrvalues)
        if (flabel == 'feature_id')  fnames(object) <- as.character(fdt(object)$feature_id)
    }
    fdt(object)[[flabel]] %<>% factor(unique(.))                # fix order
# Order samples
    if (cluster_samples){
        idx <- matrixStats::colSds(assays(object)[[assay]]) > 0 # this ad-hoc dropping of samples is undesirable
        object %<>% extract(, idx)
        idx <- hclust(as.dist(1-cor(assays(object)[[assay]])))$order
        object %<>% extract(, idx)                              # order samples
    }
    object %<>% split_samples(group)                            # split by group
    object %<>% Reduce(cbind, .)                                # cbind
    sdt(object)$sample_id %<>% factor(unique(.))                # fix order
# Prepare
    dt <- sumexp_to_longdt(object, assay = assay, fvars = flabel)
    setnames(dt, 'value', 'z-score')
    vlines <- 0.5 + c(0, cumsum(table(object[[group]])))
    if (!is.null(coef)){
        hlines <- 0.5 + c(0, sum(effectmat(object, fit = fit, coef = coef)[, 1] < 0), nrow(object))
    }
# Plot
    p <- ggplot(data = dt, aes(x = sample_id, y = !!sym(flabel), fill = `z-score`)) +
         geom_tile() +
         theme_minimal() + xlab(NULL) + ylab(NULL) + 
         scale_x_discrete(position = 'top') + 
         theme(axis.text.x = element_text(angle = 90, hjust = 0)) + 
         scale_fill_gradient2(low = '#ff5050', high = '#009933', na.value = 'white') + 
         geom_vline(xintercept = vlines)
    if (!is.null(coef)){
        p <- p + geom_hline(yintercept = hlines)
    }
    p
}


get_density <- function(x, y, ...) {
    # Kamil Slowikowski
    # https://slowkow.com/notes/ggplot2-color-by-density/
    dens <- MASS::kde2d(x, y, ...)
    ix <- findInterval(x, dens$x)
    iy <- findInterval(y, dens$y)
    ii <- cbind(ix, iy)
    return(dens$z[ii])
}


#' Plot joint density
#' @param object SummarizedExperiment
#' @param xvar   svar
#' @param yvar   svar
#' @param color   TRUE or FALSE
#' @param contour TRUE or FALSE
#' @param smooth  TRUE or FALSE
#' @return ggplot
#' @examples
#' file <- system.file('extdata/atkin.metabolon.xlsx', package = 'autonomics')
#' object <- read_metabolon(file)
#' set.seed(20)
#' object$Height <- rnorm(ncol(object), mean = 176)
#' object$Weight <- rnorm(ncol(object), mean = 85.4)
#' plot_joint_density(object, 'Height', 'Weight')
#' plot_joint_density(object, 'Height', 'Weight',  smooth = TRUE)
#' plot_joint_density(object, 'Height', 'Weight',   color = TRUE)
#' plot_joint_density(object, 'Height', 'Weight', contour = TRUE)
#' @export
plot_joint_density <- function(
     object, xvar, yvar, color = TRUE, contour = TRUE, smooth = TRUE
){
    # Filter out na values
        obj <- object
        obj %<>% filter_samples(!is.na(!!sym(xvar)))
        obj %<>% filter_samples(!is.na(!!sym(yvar)))
    # X
        xvalues <- obj[[xvar]]
        densityfun <- approxfun(density(xvalues, na.rm = TRUE))
        pX <- ggplot() + theme_bw() + 
                         annotate('point', x = sort(xvalues), y = -densityfun(sort(xvalues))) + 
                         annotate('path',  x = sort(xvalues), y = -densityfun(sort(xvalues))) + 
                         scale_x_continuous(position = 'top') + 
                         xlab(NULL) + 
                         ylab('') + 
                         theme(axis.text.y = element_blank(), # 5.5 each is default
                                panel.grid = element_blank(), # t=0 & b=10.5 preserves asp ratio
                               plot.margin = unit(c(t = 0, r = 5.5, b = 10.5, l = 5.5), 'points'))
    # Y
        yvalues <- sort(obj[[yvar]])
        densityfun <- approxfun(density(yvalues, na.rm = TRUE))
        pY <- ggplot() + theme_bw() + 
                         annotate('point', y = sort(yvalues), x = -densityfun(sort(yvalues))) + 
                         annotate('path',  y = sort(yvalues), x = -densityfun(sort(yvalues))) + 
                         scale_y_continuous(position = 'right') + 
                         xlab('') + 
                         ylab(NULL) + 
                         theme(axis.text.x = element_blank(), 
                                panel.grid = element_blank(), 
                               plot.margin = unit(c(t = 5.5, r = 0, b = 5.5, l = 10.5), 'points'))
    # XY
        obj$xydensity <- get_density(obj[[xvar]], obj[[yvar]])
        pXY <- ggplot(sdt(obj), aes(x = !!sym(xvar), y = !!sym(yvar))) + theme_bw()
        if (contour) pXY <- pXY + geom_density_2d(color = 'gray80')
      # if (fill)    pXY <- pXY + geom_density_2d_filled()
        if (smooth)  pXY <- pXY + geom_smooth(se = FALSE, formula = y~x, method = 'lm', color = '#24517f')
        if (color){  pXY <- pXY + geom_point(aes(x = !!sym(xvar), y = !!sym(yvar), color = xydensity)) + scale_color_gradient(low = '#56B1F7', high = '#132B43')
        } else {     pXY <- pXY + geom_point() }
        pXY <- pXY + ylab(yvar) + xlab(xvar) + 
                   guides(fill = 'none', color = 'none') + 
                   theme(axis.text.x = element_blank(), 
                         axis.text.y = element_blank(), 
                          panel.grid = element_blank() )
        layout <- matrix(c(2,3,4,1), byrow = TRUE, nrow = 2)
        gridExtra::grid.arrange(pX, pY, pXY, layout_matrix = layout)
}
bhagwataditya/autonomics documentation built on Dec. 1, 2024, 12:27 a.m.