Description Usage Arguments Value Author(s) References Examples
Imputes missing DNA methylation data
1 |
dat |
Matrix of betas or M-values |
min |
Minimum value of the distribution |
max |
Maximum value of the distribution |
max.sv |
Max number of singular values to be used in the psuedoinvers matrix. The parameter is used to reduce the matrix rank. |
col.list |
Convert col.list, if any, from names to numbers |
Returns imputed values for the missing values.
Pietro Di Lena
Di Lena P et al: Missing value estimation methods for DNA methylation data. submitted to Bioinformatics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Load the methyLImp dataset, containing no missing value
data(gse64495)
summary(gse64495)
## Artificially introduce 10% missing values in the first sample
## with the gen_randNA function
set.seed(50)
samp <- 1
frac <- 0.1
gse64495.mis <- gen_randNA(gse64495,samp,frac)
summary(gse64495.mis)
## Impute the missing values with the methyLImp routine.
## Note that variables need to be on the columns and
## samples on the rows.
gse64495.imp <- methyLImp(t(gse64495.mis),min=0,max=0)
gse64495.imp <- t(gse64495.imp)
## Compare imputed and original values
miss <- is.na(gse64495.mis[,samp])
orig <- gse64495[miss,samp]
pred <- gse64495.imp[miss,samp]
gen_stat(orig,pred)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.