Description Usage Arguments Value Author(s) References Examples
Calculates the performances statistics of an imputed methylation array with respect to four metrics: Root Mean Square Error, Mean Absolute Error, Pearson Correlation Coefficient and Mean Absolute Percentage Error.
1 | gen_stat(original, imputed)
|
original |
Original matrix of betas or M-values before imputation |
imputed |
Matrix of betas or M-values after imputation |
Returns a detailed summary of the performance statistics of the imputed array.
Pietro Di Lena
Di Lena P et al: Missing value estimation methods for DNA methylation data. submitted to Bioinformatics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Load the methyLImp dataset, containing no missing value
data(gse64495)
summary(gse64495)
## Artificially introduce 10% missing values in the first sample
## with the gen_randNA function
set.seed(50)
samp <- 1
frac <- 0.1
gse64495.mis <- gen_randNA(gse64495,samp,frac)
summary(gse64495.mis)
## Impute the missing values with the methyLImp routine methyLImp
## Note that variables need to be on the columns and
## samples on the rows.
gse64495.imp <- methyLImp(t(gse64495.mis),min=0,max=0)
gse64495.imp <- t(gse64495.imp)
## Compare imputed and original values
miss <- is.na(gse64495.mis[,samp])
orig <- gse64495[miss,samp]
pred <- gse64495.imp[miss,samp]
gen_stat(orig,pred)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.