suppressPackageStartupMessages(library(BPRMeth)) suppressPackageStartupMessages(library(purrr)) suppressPackageStartupMessages(library(ggplot2)) suppressPackageStartupMessages(library(cowplot)) suppressPackageStartupMessages(library(gridExtra)) suppressPackageStartupMessages(library(reshape2)) suppressPackageStartupMessages(library(grid)) suppressPackageStartupMessages(library(ROCR)) suppressPackageStartupMessages(library(scales)) suppressPackageStartupMessages(library(data.table)) suppressPackageStartupMessages(library(RColorBrewer))
# Data io <- list() io$script_dir <- "../" io$data_dir <- "../local-data/melissa/synthetic/imputation/" io$cpg_dir <- paste0(io$data_dir, "coverage/") io$var_dir <- paste0(io$data_dir, "dissimilarity/") io$cell_dir <- paste0(io$data_dir, "cells/") io$K <- 4 io$basis <- 4 io$cpg_prcg <- 0.4 io$cl_var <- 0.5 io$data_prcg <- 0.1 io$reg_prcg <- 1 R.utils::sourceDirectory(paste0(io$script_dir, "lib/"), modifiedOnly = FALSE)
# Different CpG coverages io$cpg_analysis <- seq(0.1, 0.9, 0.1) # Load synthetic data cpg_data <- readRDS(paste0(io$cpg_dir, "raw/encode_data.rds")) # Load joint analysis results dt_melissa_cpg_prcg <- readRDS(paste0(io$cpg_dir, "encode_melissa_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_clusterVar", io$cl_var, ".rds")) # Load independent analysis results indep_cpg_prcg <- readRDS(paste0(io$cpg_dir, "encode_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_clusterVar", io$cl_var, ".rds")) # Load RF analysis results rf_cpg_prcg <- readRDS(paste0(io$cpg_dir, "encode_rf_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_clusterVar", io$cl_var, ".rds")) # Load RF analysis results gmm_cpg_prcg <- readRDS(paste0(io$cpg_dir, "encode_gmm_K", io$K, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_clusterVar", io$cl_var, ".rds")) # Load RF analysis results pca_gmm_cpg_prcg <- readRDS(paste0(io$cpg_dir, "encode_pca_gmm_K", io$K, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_clusterVar", io$cl_var, ".rds")) N <- length(dt_melissa_cpg_prcg) # Numer of replications M <- length(io$cpg_analysis) # Number of Cpg coverage thresholds dt_cpg_analysis <- data.table(cpg_cov = numeric(), melissa_ari = numeric(), melissa_rate_ari = numeric(), gmm_ari = numeric(), pca_gmm_ari = numeric(), melissa_error = numeric(), melissa_rate_error = numeric(), gmm_error = numeric(), pca_gmm_error = numeric()) # Iterate over each replication of the experiment for (i in 1:length(dt_melissa_cpg_prcg)) { # Itrate over simulations for (m in 1:length(io$cpg_analysis)) { # Iterate over CpG percentages dt <- data.table(cpg_cov = io$cpg_analysis[m], melissa_ari = cluster_ari(cpg_data$synth_data[[i]]$C_true, dt_melissa_cpg_prcg[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_ari = cluster_ari(cpg_data$synth_data[[i]]$C_true, dt_melissa_cpg_prcg[[i]]$melissa_rate[[m]]$r_nk), gmm_ari = cluster_ari(cpg_data$synth_data[[i]]$C_true, gmm_cpg_prcg[[i]]$gmm[[m]]$r_nk), pca_gmm_ari = cluster_ari(cpg_data$synth_data[[i]]$C_true, pca_gmm_cpg_prcg[[i]]$gmm[[m]]$r_nk), melissa_error = cluster_error(cpg_data$synth_data[[i]]$C_true, dt_melissa_cpg_prcg[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_error = cluster_error(cpg_data$synth_data[[i]]$C_true, dt_melissa_cpg_prcg[[i]]$melissa_rate[[m]]$r_nk), gmm_error = cluster_error(cpg_data$synth_data[[i]]$C_true, gmm_cpg_prcg[[i]]$gmm[[m]]$r_nk), pca_gmm_error = cluster_error(cpg_data$synth_data[[i]]$C_true, pca_gmm_cpg_prcg[[i]]$gmm[[m]]$r_nk) ) # Add results to final data.table dt_cpg_analysis <- rbind(dt_cpg_analysis, dt) } } rm(iter, dt, i, m, N, M, dt_melissa_cpg_prcg, indep_cpg_prcg, cpg_data, gmm_cpg_prcg, rf_cpg_prcg)
# Different cluster dissimilarity values io$cluster_var_analysis <- seq(0, 1, .1) # Load joint analysis results dt_melissa_cl_var <- readRDS(paste0(io$var_dir, "encode_melissa_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load independent analysis results indep_cl_var <- readRDS(paste0(io$var_dir, "encode_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load RF analysis results rf_cl_var <- readRDS(paste0(io$var_dir, "encode_rf_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load RF analysis results gmm_cl_var <- readRDS(paste0(io$var_dir, "encode_gmm_K", io$K, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) N <- length(dt_melissa_cl_var) # Numer of replications M <- length(io$cluster_var_analysis) # Number of cell variability thresholds dt_var_analysis <- data.table(cell_var = numeric(), auc_melissa = numeric(), auc_melissa_rate = numeric(), auc_indep_prof = numeric(), auc_indep_rate = numeric(), auc_rf = numeric(), auc_gmm = numeric(), f_melissa = numeric(), f_melissa_rate = numeric(), f_indep_prof = numeric(), f_indep_rate = numeric(), f_rf = numeric(), f_gmm = numeric(), melissa_ari = numeric(), melissa_rate_ari = numeric(), gmm_ari = numeric(), melissa_error = numeric(), melissa_rate_error = numeric(), gmm_error = numeric()) # Iterate over each replication of the experiment for (i in 1:length(dt_melissa_cl_var)) { for (m in 1:length(io$cluster_var_analysis)) { # Load synthetic data var_data <- readRDS(paste0(io$var_dir, "raw/data-sims/encode_data_", io$cluster_var_analysis[m], "_", i, ".rds")) # Create prediction objects melissa_pred <- prediction(dt_melissa_cl_var[[i]]$eval_perf[[m]]$eval_prof$pred_obs, dt_melissa_cl_var[[i]]$eval_perf[[m]]$eval_prof$act_obs) melissa_rate_pred <- prediction(dt_melissa_cl_var[[i]]$eval_perf[[m]]$eval_mean$pred_obs, dt_melissa_cl_var[[i]]$eval_perf[[m]]$eval_mean$act_obs) indep_prof_pred <- prediction(indep_cl_var[[i]]$eval_perf[[m]]$eval_prof$pred_obs, indep_cl_var[[i]]$eval_perf[[m]]$eval_prof$act_obs) indep_rate_pred <- prediction(indep_cl_var[[i]]$eval_perf[[m]]$eval_mean$pred_obs, indep_cl_var[[i]]$eval_perf[[m]]$eval_mean$act_obs) rf_pred <- prediction(rf_cl_var[[i]]$eval_perf[[m]]$pred_obs, rf_cl_var[[i]]$eval_perf[[m]]$act_obs) gmm_pred <- prediction(gmm_cl_var[[i]]$eval_perf[[m]]$pred_obs, gmm_cl_var[[i]]$eval_perf[[m]]$act_obs) # F-measure performance f_melissa <- performance(melissa_pred, "f") f_melissa_rate <- performance(melissa_rate_pred, "f") f_indep_prof <- performance(indep_prof_pred, "f") f_indep_rate <- performance(indep_rate_pred, "f") f_rf <- performance(rf_pred, "f") f_gmm <- performance(gmm_pred, "f") dt <- data.table(cell_var = io$cluster_var_analysis[m], auc_melissa = performance(melissa_pred, "auc")@y.values[[1]], auc_melissa_rate = performance(melissa_rate_pred, "auc")@y.values[[1]], auc_indep_prof = performance(indep_prof_pred, "auc")@y.values[[1]], auc_indep_rate = performance(indep_rate_pred, "auc")@y.values[[1]], auc_rf = performance(rf_pred, "auc")@y.values[[1]], auc_gmm = performance(gmm_pred, "auc")@y.values[[1]], f_melissa = f_melissa@y.values[[1]][min(which(f_melissa@x.values[[1]] <= 0.5))], f_melissa_rate = f_melissa_rate@y.values[[1]][min(which(f_melissa_rate@x.values[[1]] <= 0.5))], f_indep_prof = f_indep_prof@y.values[[1]][min(which(f_indep_prof@x.values[[1]] <= 0.5))], f_indep_rate = f_indep_rate@y.values[[1]][min(which(f_indep_rate@x.values[[1]] <= 0.5))], f_rf = f_rf@y.values[[1]][min(which(f_rf@x.values[[1]] <= 0.5))], f_gmm = f_gmm@y.values[[1]][min(which(f_gmm@x.values[[1]] <= 0.5))], melissa_ari = cluster_ari(var_data$synth_data$C_true, dt_melissa_cl_var[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_ari = cluster_ari(var_data$synth_data$C_true, dt_melissa_cl_var[[i]]$melissa_rate[[m]]$r_nk), gmm_ari = cluster_ari(var_data$synth_data$C_true, gmm_cl_var[[i]]$gmm[[m]]$r_nk), melissa_error = cluster_error(var_data$synth_data$C_true, dt_melissa_cl_var[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_error = cluster_error(var_data$synth_data$C_true, dt_melissa_cl_var[[i]]$melissa_rate[[m]]$r_nk), gmm_error = cluster_error(var_data$synth_data$C_true, gmm_cl_var[[i]]$gmm[[m]]$r_nk) ) # Add results to final data.table dt_var_analysis <- rbind(dt_var_analysis, dt) } } rm(iter, i, m, N, M, dt_melissa_cl_var, indep_cl_var, dt, var_data, gmm_cl_var, rf_cl_var)
# Different cluster dissimilarity values io$cells_analysis <- c(25, 50, 75, 100, 125, 150, 175, 200, 225, 250) io$cpg_prcg <- 0.4 # Load joint analysis results dt_melissa_cells <- readRDS(paste0(io$cell_dir, "encode_melissa_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load independent analysis results indep_cells <- readRDS(paste0(io$cell_dir, "encode_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load RF analysis results rf_cells <- readRDS(paste0(io$cell_dir, "encode_rf_indep_K", io$K, "_rbf", io$basis, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) # Load RF analysis results gmm_cells <- readRDS(paste0(io$cell_dir, "encode_gmm_K", io$K, "_dataTrain", io$data_prcg, "_regionTrain", io$reg_prcg, "_cpgTrain", io$cpg_prcg, ".rds")) N <- length(dt_melissa_cells) # Numer of replications M <- length(io$cells_analysis) # Number of cell variability thresholds dt_cell_analysis <- data.table(cells = numeric(), auc_melissa = numeric(), auc_melissa_rate = numeric(), auc_indep_prof = numeric(), auc_indep_rate = numeric(), auc_rf = numeric(), auc_gmm = numeric(), f_melissa = numeric(), f_melissa_rate = numeric(), f_indep_prof = numeric(), f_indep_rate = numeric(), f_rf = numeric(), f_gmm = numeric(), melissa_ari = numeric(), melissa_rate_ari = numeric(), gmm_ari = numeric(), melissa_error = numeric(), melissa_rate_error = numeric(), gmm_error = numeric()) # Iterate over each replication of the experiment for (i in 1:length(dt_melissa_cells)) { for (m in 1:length(io$cells_analysis)) { # Load synthetic data cell_data <- readRDS(paste0(io$cell_dir, "raw/data-sims/encode_data_", io$cells_analysis[m], "_", i, ".rds")) # Create prediction objects melissa_pred <- prediction(dt_melissa_cells[[i]]$eval_perf[[m]]$eval_prof$pred_obs, dt_melissa_cells[[i]]$eval_perf[[m]]$eval_prof$act_obs) melissa_rate_pred <- prediction(dt_melissa_cells[[i]]$eval_perf[[m]]$eval_mean$pred_obs, dt_melissa_cells[[i]]$eval_perf[[m]]$eval_mean$act_obs) indep_prof_pred <- prediction(indep_cells[[i]]$eval_perf[[m]]$eval_prof$pred_obs, indep_cells[[i]]$eval_perf[[m]]$eval_prof$act_obs) indep_rate_pred <- prediction(indep_cells[[i]]$eval_perf[[m]]$eval_mean$pred_obs, indep_cells[[i]]$eval_perf[[m]]$eval_mean$act_obs) rf_pred <- prediction(rf_cells[[i]]$eval_perf[[m]]$pred_obs, rf_cells[[i]]$eval_perf[[m]]$act_obs) gmm_pred <- prediction(gmm_cells[[i]]$eval_perf[[m]]$pred_obs, gmm_cells[[i]]$eval_perf[[m]]$act_obs) # F-measure performance f_melissa <- performance(melissa_pred, "f") f_melissa_rate <- performance(melissa_rate_pred, "f") f_indep_prof <- performance(indep_prof_pred, "f") f_indep_rate <- performance(indep_rate_pred, "f") f_rf <- performance(rf_pred, "f") f_gmm <- performance(gmm_pred, "f") dt <- data.table(cells = io$cells_analysis[m], auc_melissa = performance(melissa_pred, "auc")@y.values[[1]], auc_melissa_rate = performance(melissa_rate_pred, "auc")@y.values[[1]], auc_indep_prof = performance(indep_prof_pred, "auc")@y.values[[1]], auc_indep_rate = performance(indep_rate_pred, "auc")@y.values[[1]], auc_rf = performance(rf_pred, "auc")@y.values[[1]], auc_gmm = performance(gmm_pred, "auc")@y.values[[1]], f_melissa = f_melissa@y.values[[1]][min(which(f_melissa@x.values[[1]] <= 0.5))], f_melissa_rate = f_melissa_rate@y.values[[1]][min(which(f_melissa_rate@x.values[[1]] <= 0.5))], f_indep_prof = f_indep_prof@y.values[[1]][min(which(f_indep_prof@x.values[[1]] <= 0.5))], f_indep_rate = f_indep_rate@y.values[[1]][min(which(f_indep_rate@x.values[[1]] <= 0.5))], f_rf = f_rf@y.values[[1]][min(which(f_rf@x.values[[1]] <= 0.5))], f_gmm = f_gmm@y.values[[1]][min(which(f_gmm@x.values[[1]] <= 0.5))], melissa_ari = cluster_ari(cell_data$synth_data$C_true, dt_melissa_cells[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_ari = cluster_ari(cell_data$synth_data$C_true, dt_melissa_cells[[i]]$melissa_rate[[m]]$r_nk), gmm_ari = cluster_ari(cell_data$synth_data$C_true, gmm_cells[[i]]$gmm[[m]]$r_nk), melissa_error = cluster_error(cell_data$synth_data$C_true, dt_melissa_cells[[i]]$melissa_prof[[m]]$r_nk), melissa_rate_error = cluster_error(cell_data$synth_data$C_true, dt_melissa_cells[[i]]$melissa_rate[[m]]$r_nk), gmm_error = cluster_error(cell_data$synth_data$C_true, gmm_cells[[i]]$gmm[[m]]$r_nk) ) # Add results to final data.table dt_cell_analysis <- rbind(dt_cell_analysis, dt) } } rm(iter, i, m, N, M, dt_melissa_cells, indep_cells, rf_cells, gmm_cells, dt, cell_data)
dt_ari_cpg_jitter <- copy(dt_cpg_analysis) dt_ari_cpg_jitter <- dt_ari_cpg_jitter %>% .[, c("cpg_cov", "melissa_ari", "melissa_rate_ari", "gmm_ari", "pca_gmm_ari")] %>% setnames(c("cpg_cov", "melissa_ari", "melissa_rate_ari", "gmm_ari", "pca_gmm_ari"), c("x", "Melissa", "Melissa Rate", "GMM", "GMM-PCA")) %>% .[, x := as.factor(x)] %>% melt(variable.name = "Model", value.name = "y") p_ari_cpg_jitter <- ari_jitter_plot(dt_ari_cpg_jitter, x_lab = "CpG coverage", y_lab = "ARI", title = "") print(p_ari_cpg_jitter) pdf(file = paste0("out/synthetic/ari-pca-gmm.pdf"), width = 10, height = 5, useDingbats = FALSE) p_ari_cpg_jitter dev.off()
dt_ari_var_jitter <- copy(dt_var_analysis) dt_ari_var_jitter <- dt_ari_var_jitter %>% .[, c("cell_var", "melissa_ari", "melissa_rate_ari", "gmm_ari")] %>% setnames(c("cell_var", "melissa_ari", "melissa_rate_ari", "gmm_ari"), c("x", "Melissa", "Melissa Rate", "GMM")) %>% .[, x := as.factor(x)] %>% melt(variable.name = "Model", value.name = "y") p_ari_var_jitter <- ari_jitter_plot(dt_ari_var_jitter, x_lab = "Cluster dissimilarity", y_lab = "ARI", title = "") print(p_ari_var_jitter) # pdf(file = paste0("out/synthetic/gmm/ari-synth.pdf"), width = 10, height = 5, useDingbats = FALSE) # p_ari_var_jitter # dev.off()
dt_ari_cell_jitter <- copy(dt_cell_analysis) dt_ari_cell_jitter <- dt_ari_cell_jitter %>% .[, c("cells", "melissa_ari", "melissa_rate_ari", "gmm_ari")] %>% setnames(c("cells", "melissa_ari", "melissa_rate_ari", "gmm_ari"), c("x", "Melissa", "Melissa Rate", "GMM")) %>% .[, x := as.factor(x)] %>% melt(variable.name = "Model", value.name = "y") p_ari_cell_jitter <- ari_jitter_plot(dt_ari_cell_jitter, x_lab = "Cells assayed", y_lab = "ARI", title = "") print(p_ari_cell_jitter) # pdf(file = paste0("out/synthetic/gmm/ari-synth-cells.pdf"), width = 10, height = 5, useDingbats = FALSE) # p_ari_cell_jitter # dev.off()
# Data io <- list() io$script_dir <- "../" io$model_sel_dir <- "../local-data/melissa/synthetic/model-selection/" io$K <- 10 # Different CpG coverages io$cluster_var_analysis <- seq(0, 1, .1) # Load joint analysis results broad_model <- readRDS(paste0(io$model_sel_dir, "encode_broad_model_selection_K", io$K, ".rds")) strict_model <- readRDS(paste0(io$model_sel_dir, "encode_strict_model_selection_K", io$K, ".rds")) dt_model_analysis <- data.table(cell_var = numeric(), broad_K = numeric(), strict_K = numeric()) for (i in 1:5) { for (m in 1:length(io$cluster_var_analysis)) { dt <- data.table(cell_var = io$cluster_var_analysis[m], broad_K = length(which(broad_model[[i]]$bpr_prof_fit[[m]]$delta > 6)), strict_K = length(which(strict_model[[i]]$bpr_prof_fit[[m]]$delta > 6))) dt_model_analysis <- rbind(dt_model_analysis, dt) } } rm(dt, i, m, broad_model, strict_model) dt_model_jitter <- copy(dt_model_analysis) dt_model_jitter <- dt_model_jitter %>% setnames(c("cell_var", "broad_K", "strict_K"), c("x", "Broad Prior", "Strict Prior")) %>% .[, x := as.factor(x)] %>% melt(variable.name = "Model", value.name = "y") p_model_jitter <- ari_jitter_plot(dt_model_jitter, x_lab = "Cluster dissimilarity", y_lab = "Clusters K", title = "") print(p_model_jitter)
# Data library(microbenchmark) io <- list() io$script_dir <- "../" io$model_eff_dir <- "../local-data/melissa/synthetic/model-efficiency/" io$K <- 3 io$M <- 200 io$N <- c(50, 100, 200, 500, 1000, 2000) io$iter <- seq(1, 5) dt_efficiency_analysis <- data.table(cells = numeric(), min_gibbs = numeric(), min_vb = numeric()) for (i in io$iter) { for (n in io$N) { eff_dt <- readRDS(paste0(io$model_eff_dir, "model_efficiency_K", io$K, "_M", io$M, "_N", n, "_", i, ".rds"))[[1]] dt <- data.table(cells = n, min_gibbs = (eff_dt$time[which(eff_dt[, "expr"] == "gibbs")]) / 10^9 / 60 / 60, min_vb = (eff_dt$time[which(eff_dt[, "expr"] == "vb")]) / 10^9 / 60 / 60 ) dt_efficiency_analysis <- rbind(dt_efficiency_analysis, dt) } } rm(i, n, eff_dt) dt_eff_jitter <- copy(dt_efficiency_analysis) dt_eff_jitter <- dt_eff_jitter %>% setnames(c("cells", "min_gibbs", "min_vb"), c("x", "Gibbs", "VB")) %>% .[, x := as.factor(x)] %>% melt(variable.name = "Model", value.name = "y") %>% .[, Model := factor(Model, levels = c("VB", "Gibbs"))] p_eff_jitter <- eff_jitter_plot(dt_eff_jitter, x_lab = "Cells", y_lab = "Hours", title = "") print(p_eff_jitter)
## AUC plot p_auc_cpg_jitter <- auc_jitter_plot(auc_cpg_jitter, x_lab = "CpG coverage", y_lab = "AUC", title = "") + theme(legend.position = "none") + scale_y_continuous(limits = c(0.5, .9), breaks = pretty_breaks(n = 6)) p_auc_cell_jitter <- auc_jitter_plot(auc_cell_jitter, x_lab = "Cells assayed", y_lab = "AUC", title = "") + theme(legend.position = "right") + scale_y_continuous(limits = c(0.5, .9), breaks = pretty_breaks(n = 6)) # p_auc_var_jitter <- auc_jitter_plot(auc_var_jitter, x_lab = "Cluster dissimilarity", y_lab = "AUC", title = "") + # theme(legend.position = "right") + scale_y_continuous(limits = c(0.5, .9), breaks = pretty_breaks(n = 6)) final_fig_auc <- plot_grid(p_auc_cpg_jitter, p_auc_cell_jitter, labels = c("a", "b"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1, 1.5)) print(final_fig_auc) pdf(file = paste0("out/synthetic/auc-cpg-cells.pdf"), width = 17, height = 6, useDingbats = FALSE) final_fig_auc dev.off()
## AUC plot p_f_cpg_jitter <- auc_jitter_plot(f_cpg_jitter, x_lab = "CpG coverage", y_lab = "F-measure", title = "") + theme(legend.position = "none") + scale_y_continuous(limits = c(0.3, .8), breaks = pretty_breaks(n = 6)) p_f_cell_jitter <- auc_jitter_plot(f_cell_jitter, x_lab = "Cells assayed", y_lab = "F-measure", title = "") + theme(legend.position = "right") + scale_y_continuous(limits = c(0.3, .8), breaks = pretty_breaks(n = 6)) final_fig_f <- plot_grid(p_f_cpg_jitter, p_f_cell_jitter, labels = c("a", "b"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1, 1.5)) print(final_fig_f) pdf(file = paste0("out/synthetic/f-cpg-cells.pdf"), width = 17, height = 6, useDingbats = FALSE) final_fig_f dev.off()
## AUC plot p_auc_var_jitter <- auc_jitter_plot(auc_var_jitter, x_lab = "Cluster dissimilarity", y_lab = "AUC", title = "") + theme(legend.position = "none") + scale_y_continuous(limits = c(0.5, .9), breaks = pretty_breaks(n = 6)) p_f_var_jitter <- auc_jitter_plot(f_var_jitter, x_lab = "Cluster dissimilarity", y_lab = "F-measure", title = "") + theme(legend.position = "right") + scale_y_continuous(limits = c(0.3, .8), breaks = pretty_breaks(n = 6)) final_fig_var <- plot_grid(p_auc_var_jitter, p_f_var_jitter, labels = c("a", "b"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1, 1.45)) print(final_fig_var) pdf(file = paste0("out/synthetic/cl-var.pdf"), width = 17, height = 6, useDingbats = FALSE) final_fig_var dev.off()
# Joint plot of ARI, model selection and model efficiency p_ari_var_jitter <- ari_jitter_plot(dt_ari_var_jitter, x_lab = "Cluster dissimilarity", y_lab = "ARI", title = "Cluster performance") + theme(legend.position = "none") + scale_x_discrete(breaks = pretty_breaks(n = 6)) p_ari_cpg_jitter <- ari_jitter_plot(dt_ari_cpg_jitter, x_lab = "CpG coverage", y_lab = "ARI", title = "Cluster performance") + theme(legend.position = c(0.55, 0.23)) + scale_x_discrete(breaks = pretty_breaks(n = 5)) p_ari_cell_jitter <- ari_jitter_plot(dt_ari_cell_jitter, x_lab = "Cells assayed", y_lab = "ARI", title = "Cluster performance") + theme(legend.position = "none") #+ #scale_x_discrete(breaks = pretty_breaks(n = 6)) p_model_jitter <- ari_jitter_plot(dt_model_jitter, x_lab = "Cluster dissimilarity", y_lab = "Clusters K", title = "Model Selection") + theme(legend.position = c(0.55, 0.23)) + scale_x_discrete(breaks = pretty_breaks(n = 6)) top_ari_analysis <- plot_grid(p_ari_cpg_jitter, p_ari_var_jitter, labels = c("a", "b"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1, 1)) bot_perf_analysis <- plot_grid(p_ari_cell_jitter, p_model_jitter, labels = c("c", "d"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1, 1)) final_encode_analysis <- plot_grid(top_ari_analysis, bot_perf_analysis, ncol = 1, nrow = 2, rel_widths = c(1, 1)) print(final_encode_analysis) pdf(file = paste0("out/synthetic/perf-synth.pdf"), width = 14, height = 10, useDingbats = FALSE) final_encode_analysis dev.off()
# Joint plot of ARI, model selection and model efficiency p_ari_cell_jitter <- ari_jitter_plot(dt_ari_cell_jitter, x_lab = "Cells assayed", y_lab = "ARI", title = "Cluster performance") + theme(legend.position = c(0.55, 0.23)) #scale_x_discrete(breaks = pretty_breaks(n = 6)) final_fig_cell_imp_cl <- plot_grid(p_auc_cell_jitter, p_ari_cell_jitter, labels = c("a", "b"), label_size = 25, ncol = 2, nrow = 1, rel_widths = c(1.3, 1)) print(final_fig_cell_imp_cl) pdf(file = paste0("out/synthetic/auc-ari-cells.pdf"), width = 17, height = 6, useDingbats = FALSE) final_fig_cell_imp_cl dev.off()
p_eff_jitter <- eff_jitter_plot(dt_eff_jitter, x_lab = "Cells", y_lab = "Hours", title = "Model Cost") + theme(legend.position = c(0.06, 0.8)) print(p_eff_jitter) pdf(file = paste0("out/synthetic/efficiency.pdf"), width = 10, height = 5, useDingbats = FALSE) p_eff_jitter dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.