###############################################################################
#
# plotPath.R: This file contains all functions related to plotting of
# networks and paths.
# author: Ahmed Mohamed <mohamed@kuicr.kyoto-u.ac.jp>
#
# This is released under GPL-2.
#
# Documentation was created using roxygen
#
###############################################################################
#' Plots an annotated igraph object.
#'
#' This function is a wrapper function for \code{\link[igraph]{plot.igraph}}, with 2 main additions.
#' 1. Add the ability to color vertices by their attributes (see examples), accompanied by an inofrmative
#' legend. 2. Resize vertex.size, edge.arrow.size, label.cex according to the plot size and the size of the
#' network.
#'
#' @param graph An annotated igraph object.
#' @param vertex.color A list of colors for vertices, or an attribute names (ex: "pathway") by which vertices
#' will be colored. Complex attributes, where a vertex belongs to more than one group, are supported. This can
#' also be the output of \code{\link{colorVertexByAttr}}.
#' @param col.palette A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).
#' @param layout Either a graph layout function, or a two-column matrix specifiying vertex coordinates.
#' @param legend Wheter to plot a legend. The legend is only plotted if vertices are colored by attribute values.
#' @param ... Additional arguments passed to \code{\link[igraph]{plot.igraph}}.
#'
#' @return
#' Produces a plot of the network.
#'
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @export
#' @examples
#' data("ex_kgml_sig")
#' plotNetwork(ex_kgml_sig, vertex.color="pathway")
#' plotNetwork(ex_kgml_sig, vertex.color="pathway", col.palette=heat.colors)
#' plotNetwork(ex_kgml_sig, vertex.color="pathway",
#' col.palette=c("red", "green","blue","grey"))
#'
plotNetwork <- function(graph, vertex.color, col.palette = palette(), layout = layout.auto, legend=TRUE,...){
opar <- par()
opar[c("cin", "cra", "csi", "cxy", "din", "page")] <- NULL
on.exit(par(opar))
par(mar=c(0,0,2,0))
# Leave a space in the outer margin for legend.
if(legend)
par(omi=c(0,0,0, par("pin")[1]*0.2), new=!par("page"))
plotNetwork_internal(graph, vertex.color, col.palette, layout, legend,...)
}
#' Plots an annotated igraph object higlighting ranked paths.
#'
#' This function plots a network highlighting ranked paths. If \code{path.clusters} are provided,
#' paths in the same cluster are assigned similar colors.
#'
#' @param paths The result of \code{\link{pathRanker}}.
#' @param graph An annotated igraph object.
#' @param path.clusters The result from \code{\link{pathCluster}} or \code{\link{pathClassifier}}.
#' @param col.palette A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).
#' @param layout Either a graph layout function, or a two-column matrix specifiying vertex coordinates.
#' @param ... Additional arguments passed to \code{\link{plotNetwork}}.
#'
#' @return Produces a plot of the network with paths highlighted. If paths are computed for several
#' labels (sample categories), a plot is created for each label.
#'
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @export
#' @examples
#' ## Prepare a weighted reaction network.
#' ## Conver a metabolic network to a reaction network.
#' data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
#' rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
#'
#' ## Assign edge weights based on Affymetrix attributes and microarray dataset.
#' # Calculate Pearson's correlation.
#' data(ex_microarray) # Part of ALL dataset.
#' rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
#' weight.method = "cor", use.attr="miriam.uniprot",
#' y=factor(colnames(ex_microarray)), bootstrap = FALSE)
#'
#' ## Get ranked paths using probabilistic shortest paths.
#' ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
#' K=20, minPathSize=6)
#'
#' ## Plot paths.
#' plotPaths(ranked.p, rgraph)
#'
#' ## Convert paths to binary matrix, build a classifier.
#' ybinpaths <- pathsToBinary(ranked.p)
#' p.class <- pathClassifier(ybinpaths, target.class = "BCR/ABL", M = 3)
#'
#' ## Plotting with clusters, on a metabolic graph.
#' plotPaths(ranked.p, ex_sbml, path.clusters=p.class)
#'
plotPaths <- function(paths, graph, path.clusters=NULL, col.palette=palette(), layout=layout.auto, ...){
opar <- par()
opar[c("cin", "cra", "csi", "cxy", "din", "page")] <- NULL
on.exit({par(opar);graphics::layout(1)})
process.layout(paths, 1, path.clusters, plot.clusters=FALSE)
col.process <- process.color(col.palette, paths, path.clusters, same.plot=FALSE )
path.col <- col.process[[1]]
legend.paths <- col.process[[2]]
eids <- getPathsAsEIDs(paths, graph)
if(is.null(names(path.col))){
if( !is.null(names(eids)) ) eids <- unlist(eids, recursive=FALSE)
legend.v <- highlightPaths(eids, graph, layout=layout, path.col = path.col, ...)
}else{
legend.v <- lapply(names(eids), function(x)
highlightPaths(eids[[x]], graph, layout=layout, path.col= path.col[[x]],
main=paste("y =",x), ...))
legend.v <- legend.v[[1]]
}
if(length(legend.paths)>0){
if(length(legend.v)>0){
drawLegend(vertices=legend.v, paths=legend.paths)
}else{
drawLegend(paths=legend.paths)
}
}else if (length(legend.v)>0){
drawLegend(vertices=legend.v)
}
}
#' Higlighting ranked paths over multiple network representations.
#'
#' This function highlighting ranked paths over different network representations, metabolic, reaction and
#' gene networks. The functions finds equivalent paths across different networks and marks them.
#'
#' @param paths The result of \code{\link{pathRanker}}.
#' @param metabolic.net A bipartite metabolic network.
#' @param reaction.net A reaction network, resulting from \code{\link{makeReactionNetwork}}.
#' @param gene.net A gene network, resulting from \code{\link{makeGeneNetwork}}.
#' @param path.clusters The result from \code{\link{pathCluster}} or \code{\link{pathClassifier}}.
#' @param plot.clusters Whether to plot clustering information, as generated by \code{\link{plotClusters}}
#' @param col.palette A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).
#' @param layout Either a graph layout function, or a two-column matrix specifiying vertex coordinates.
#' @param ... Additional arguments passed to \code{\link{plotNetwork}}.
#'
#' @return Highlights the path list over all provided networks.
#'
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @export
#' @examples
#' ## Prepare a weighted reaction network.
#' ## Conver a metabolic network to a reaction network.
#' data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
#' rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
#'
#' ## Assign edge weights based on Affymetrix attributes and microarray dataset.
#' # Calculate Pearson's correlation.
#' data(ex_microarray) # Part of ALL dataset.
#' rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
#' weight.method = "cor", use.attr="miriam.uniprot",
#' y=factor(colnames(ex_microarray)), bootstrap = FALSE)
#'
#' ## Get ranked paths using probabilistic shortest paths.
#' ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
#' K=20, minPathSize=6)
#'
#' plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
#' vertex.label = "", vertex.size = 4)
#'
plotAllNetworks <- function(paths, metabolic.net=NULL, reaction.net=NULL, gene.net=NULL,
path.clusters=NULL, plot.clusters=TRUE, col.palette=palette(), layout=layout.auto,...){
opar <- par()
opar[c("cin", "cra", "csi", "cxy", "din", "page")] <- NULL
on.exit({par(opar);graphics::layout(1)})
# Counting the number of networks to be plotted
numPlots = length(Filter(Negate(is.null), list(metabolic.net, reaction.net, gene.net)))
if(numPlots < 1) stop("No networks provided for plotting")
process.layout(paths,numPlots, path.clusters, plot.clusters)
col.process <- process.color(col.palette, paths, path.clusters, !is.null(path.clusters$y) && plot.clusters )
path.col <- col.process[[1]]
legend.paths <- col.process[[2]]
params <- list(paths=paths, metabolic.net=metabolic.net, reaction.net=reaction.net,
gene.net=gene.net, clusters=path.clusters, layout=layout, path.col=path.col, ...)
# Plotting networks
do.call("plotAllNetworks_internal", params)
par(mar = c(5,2,0,2)+0.1, xpd=FALSE)
# Plotting cluster information
if(!is.null(path.clusters) && plot.clusters){
ybinpaths <- pathsToBinary(paths)
if(!is.function(col.palette))
col.palette <- colorRampPalette(col.palette)
plotClusterMatrix(ybinpaths, path.clusters, col= col.palette(path.clusters$params$M))
plotClusterProbs(path.clusters, col= col.palette(path.clusters$params$M))
}
if(length(legend.paths)>0)
drawLegend(paths=legend.paths)
}
#' A graph layout function, which groups vertices by attribute.
#'
#' This function generates a layout for igraph objects, keeping vertices with the same attribute
#' (ex: in the same pathway, etc) close to each other.
#'
#' @param graph An annotated igraph object.
#' @param attr.name The attribute name by which vertices are laid out.
#' @param cluster.strength A number indicating tie strengths between vertices with the same attribute.
#' The larger it is, the closer the vertices will be.
#' @param layout A layout function, ideally a force-directed layout fuction, such as
#' \code{\link[igraph]{layout_with_fr}} and \code{\link[igraph]{layout_with_kk}}.
#'
#' @return A two-column matrix indicating the x and y postions of vertices.
#'
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @export
#' @examples
#' data("ex_kgml_sig")
#' v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway")
#' plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
#'
#' v.layout <- layoutVertexByAttr(ex_kgml_sig, "pathway", cluster.strength=5)
#' plotNetwork(ex_kgml_sig, vertex.color="pathway", layout=v.layout)
#'
layoutVertexByAttr <- function(graph, attr.name, cluster.strength = 1,layout=layout.auto){
if(!is.function(layout))
stop("'layout' is not a function.")
# create a lightweight graph w/o the attributes.
g <- graph.empty() + vertices(V(graph)$name)
g <- igraph::union(g, graph.edgelist(get.edgelist(graph)))
V(g)$name <- as.character(1:vcount(g))
E(g)$weight <- 1
attr <- getAttribute(graph, attr.name)
attr <- do.call("rbind", lapply(1:length(attr),
function(i) cbind(id=i, val=if(length(attr[[i]])==0) NA else attr[[i]] )))
attr <- attr[!is.na(attr[,2]),] #Remove vertices with no attribute values
g <- g + vertices(unique(attr[,2])) + igraph::edges(unlist(t(attr)), weight=cluster.strength)
l <- layout(g, weights=E(g)$weight)[1:vcount(graph),]
return(l)
}
#' Computes colors for vertices according to their attributes.
#'
#' This function returns a list of colors for vertices, assigned similar colors if they share a common attribute
#' (ex: in the same pathway, etc).
#'
#' @param graph An annotated igraph object.
#' @param attr.name The attribute name (ex: "pathway") by which vertices will be colored.
#' Complex attributes, where a vertex belongs to more than one group, are supported.
#' @param col.palette A color palette, or a palette generating function (ex: \preformatted{col.palette=rainbow}).
#'
#' @return A list of colors (in HEX format) for vertices.
#'
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @export
#' @examples
#' data("ex_kgml_sig")
#' v.colors <- colorVertexByAttr(ex_kgml_sig, "pathway")
#' plotNetwork(ex_kgml_sig, vertex.color=v.colors)
#'
colorVertexByAttr <- function(graph, attr.name, col.palette = palette()){
attr <- getAttribute(graph, attr.name)
attr <- do.call("rbind", lapply(1:length(attr),
function(i) data.frame(id=i, val=if(length(attr[[i]])==0) NA else attr[[i]] )))
attr$val <- as.factor(attr$val)
if(!is.function(col.palette))
col.palette <- colorRampPalette(col.palette)
col <- col.palette(nlevels(attr$val) + 1)
names(col) <- c(levels(attr$val), "NA_value_color")
col.vector <- col[attr$val]
col.vector[is.na(col.vector)] <- col[["NA_value_color"]]
return( split(col.vector, as.numeric(attr$id)) )
}
#' Plots an annotated igraph object in Cytoscape.
#'
#' \code{plotCytoscape} function has been removed because RCytoscape is no longer prensent in Bioconductor.
#' Future plans will use RCy3 for Cytoscape plotting, once RCy3 is supported on MacOS and Windows.
#' \link{plotCytoscapeGML} exports the network plot in GML format, that can be later imported into Cytoscape
#' (using "import network from file" option). This fuction is compatible with all Cytoscape versions.
#'
#' @param graph An annotated igraph object.
#' @param file Output GML file name to which the network plot is exported.
#' @param layout Either a graph layout function, or a two-column matrix specifiying vertex coordinates.
#' @param vertex.size Vertex size. If missing, the vertex attribute "size" (\preformatted{V(g)$size)}) will be used.
#' @param vertex.label Vertex labels. If missing, the vertex attribute "label" (\preformatted{V(g)$label)}) will be used.
#' If missing, vertices are labeled by their name.
#' @param vertex.shape Vertex shape in one of igraph shapes. If missing, the vertex attribute "shape" (\preformatted{V(g)$shape)})
#' will be used. Shapes are converted from igraph convention to Cytoscape convention. "square","rectangle" and "vrectangle" are
#' converted to "RECT", "csquare" and "crectangle" are converted to "ROUND_RECT", all other shapes are considered "ELLIPSE"
#' @param vertex.color A color or a list of colors for vertices. Vetices with multiple colors are not
#' supported. If missing, the vertex attribute "color" (\preformatted{V(g)$color)}) will be used.
#' @param edge.color A color or a list of colors for edges. If missing, the edge attribute "color"
#' (\preformatted{E(g)$color)}) will be used.
#'
#' @return For \code{plotCytoscapeGML}, results are written to file.
#'
#' @export
#' @author Ahmed Mohamed
#' @family Plotting methods
#' @rdname plotCytoscape
#' @examples
#' data("ex_sbml")
#' rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)
#' v.layout <- layoutVertexByAttr(rgraph, "compartment")
#' v.color <- colorVertexByAttr(rgraph, "compartment")
#'
#' # Export network plot to GML file
#' plotCytoscapeGML(rgraph, file="example.gml", layout=v.layout,
#' vertex.color=v.color, vertex.size=10)
#'
plotCytoscapeGML <- function(graph, file, layout=layout.auto,
vertex.size, vertex.label, vertex.shape, vertex.color, edge.color){
#v.size
if(!missing(vertex.size)){
if(length(vertex.size)==1)
vertex.size <- rep(vertex.size, vcount(graph))
vertex.size <- as.integer(vertex.size)
if(length(vertex.size) != vcount(graph)){
warning("Vertex sizes length and number of vertices don't match")
}else{
V(graph)$size <- vertex.size
}
}else if(is.null(V(graph)$size)){
V(graph)$size <- 15
}
#v.label
if(!missing(vertex.label)){
if(length(vertex.label) == vcount(graph)){
V(graph)$label <- as.character(vertex.label)
}else
warning("Vertex lebels length and number of vertices don't match")
}
#v.shape
igraphShape2Cyto <- function(x){
return(ifelse( x %in% c("square","rectangle","vrectangle"), "rect",
ifelse(x %in% c("csquare","crectangle"), "round_rect", "ellipse" ))
)
}
if(!missing(vertex.shape)){
vertex.shape <- as.character(vertex.shape)
if(length(vertex.shape)==1)
vertex.shape <- rep(vertex.shape, vcount(graph))
if(length(vertex.shape) == vcount(graph)){
V(graph)$type <- vertex.shape
}else
warning("Vertex shapes length and number of vertices don't match")
}else if(!is.null(V(graph)$shape)){
V(graph)$type <- igraphShape2Cyto(V(graph)$shape)
}else{
V(graph)$type <- "ellipse"
}
#v.color
col2hex <- function(x) return( rgb(t(col2rgb( x )/255)) )
if(!missing(vertex.color)){
vertex.color <- as.character(vertex.color)
if(length(vertex.color)==1)
vertex.color <- rep(vertex.color, vcount(graph))
if(length(vertex.color) == vcount(graph)){
V(graph)$fill <- col2hex(vertex.color)
}else{
warning("Vertex colors length and number of vertices don't match.\n
Multi-colored vertices are not supported in Cytoscape plots")
}
}else if(!is.null(V(graph)$color)){
V(graph)$fill <- col2hex(V(graph)$color)
}else{
V(graph)$fill <- col2hex("skyblue")
}
#e.color
if(!missing(edge.color)){
edge.color <- col2hex(edge.color)
if(length(edge.color)==1)
edge.color <- rep(edge.color, ecount(graph))
if(length(edge.color) == ecount(graph)){
E(graph)$fill <- col2hex(edge.color)
}else
warning("Edge colors length and number of vertices don't match")
}else if(!is.null(E(graph)$color)){
E(graph)$fill <- col2hex(E(graph)$color)
}else{
E(graph)$fill <- col2hex("grey")
}
if(!is.null(layout)){
if(is.function(layout)){
l <- layout(graph) #* max(V(graph)$size)
V(graph)$x <- l[,1]
V(graph)$y <- l[,2]
}else if(ncol(layout)==2 && nrow(layout)==vcount(graph)){
V(graph)$x <- layout[,1]
V(graph)$y <- layout[,2]
}else{
warning("Incompatible layout dimensions. It should be 2 columns and rows matching number of vertices")
}
}
attr <- get.data.frame(graph, what="both")
node.attr <- attr$vertices[!sapply(attr$vertices, is.list)]
node.graphics <- node.attr[ ,colnames(node.attr) %in% c("x", "y", "size", "type", "fill"), drop=FALSE]
node.attr <- node.attr[ ,!colnames(node.attr) %in% c("x", "y", "size", "type", "fill", "shape", "color"), drop=FALSE]
node.attr <- cbind(id=as.numeric(V(graph)), node.attr, graphics=toGML(node.graphics, "graphics"))
nodes.gml <- toGML(node.attr, "node", "\n")
edge.attr <- attr$edges[!sapply(attr$edges, is.list)]
names(edge.attr)[1:2] <- c("source", "target")
edge.attr[1:2] <- get.edgelist(graph,names=FALSE)
edge.graphics <- edge.attr[ ,colnames(edge.attr) %in% c("size", "type", "fill"), drop=FALSE]
edge.attr <- edge.attr[ ,!colnames(edge.attr) %in% c("size", "type", "fill", "shape", "color"), drop=FALSE]
edge.attr <- cbind(edge.attr, graphics=toGML(edge.graphics, "graphics"))
edges.gml <- toGML(edge.attr, "edge", "\n")
gml.ret <- paste('Creator "NetPathMiner ', packageVersion("NetPathMiner"),
' ', date(),'" \n',
'graph [\n', nodes.gml, '\n', edges.gml, '\n]',
sep='')
write(gml.ret, file=file)
}
####################### Internal functions for plotting #######################
plotNetwork_internal <- function(graph, vertex.color, col.palette = palette(), layout = layout.auto, legend,...){
params <- list(x=graph, ...)
legend.info <- list()
gsizes <- graph.sizes(vcount(graph))
if(is.null(params$vertex.size))
if(is.null(V(graph)$size))
params$vertex.size = gsizes$vsize
if(is.null(params$edge.arrow.size))
if(is.null(E(graph)$arrow.size))
params$edge.arrow.size = gsizes$earrow
if(is.null(params$vertex.label.cex))
if(is.null(V(graph)$label.cex))
params$vertex.label.cex = gsizes$label
if(is.null(params$vertex.frame.color))
if(is.null(V(graph)$frame.color))
params$vertex.frame.color = NA
if(!missing(vertex.color))
params$vertex.color = vertex.color
else if(!is.null(V(graph)$color))
params$vertex.color = V(graph)$color
if(!is.null(params$vertex.color)){
if(length(params$vertex.color)==1 && params$vertex.color %in% getAttrNames(graph)){ # If vertex color is an attribute.
attr.name <- params$vertex.color
params$vertex.color <- colorVertexByAttr(graph, attr.name, col.palette)
#Store lenged info
legend.info <- legend.info <- unlist(setNames(params$vertex.color, NULL))
legend.info <- legend.info[!duplicated(legend.info)]
naidx <- is.na(names(legend.info))
if(sum(naidx)>0)
legend.info <- c(setNames(NA,attr.name) ,legend.info[!naidx], setNames(legend.info[naidx], "N/A"))
else legend.info <- c(setNames(NA,attr.name) ,legend.info)
#layout vertices by attribute
if(is.function(layout))
params$layout <- layoutVertexByAttr(graph, attr.name, layout = layout)
}
# Vertices with multiple colors
if(is.list(params$vertex.color) && any(sapply(params$vertex.color, length) > 1) ){
params$vertex.pie.color <- params$vertex.color
params$vertex.shape <- "pie"
pie <- lapply(params$vertex.color, function(x) rep(1, length(x)))
params$vertex.pie <- pie
params$vertex.color <- NULL
}else{
params$vertex.color <- unlist(params$vertex.color)
}
}
if(is.null(params$layout))
params$layout <- layout
do.call("plot.igraph", params)
if(legend && length(legend.info)>0){
drawLegend(vertices = legend.info)
}else if(length(legend.info)>0) {
invisible(legend.info)
}
}
highlightPaths <- function(paths.eids, graph, path.clusters,layout=layout.auto, path.col, ...){
if(length(paths.eids)==0){
plotNetwork_internal(graph, layout=layout, legend=FALSE, ...)
return()
}
# Prepare the color pallette, and mark groups (paths)
if(missing(path.col))
path.col <- process.color(path.col, list(paths=paths.eids, y.labels=""), path.clusters, same.plot=FALSE)
path.col <- unlist(sapply(1:length(paths.eids), function(x) rep(path.col[[x]], length(paths.eids[[x]])) ))
mark.groups <- do.call("rbind", lapply(paths.eids, function(x) get.edges(graph, x) ))
mark.groups <- split(mark.groups,1:nrow(mark.groups))
legend.vertices <- plotNetwork_internal(graph, layout=layout, legend=FALSE,
mark.groups=mark.groups, mark.col=path.col, mark.border=NA, mark.shape=0, mark.expand=1,
...)
return(legend.vertices)
}
plotAllNetworks_internal <- function(paths, metabolic.net, reaction.net, gene.net, clusters, layout, path.col, ...){
# Plotting metabolic network
if(!is.null(metabolic.net)){
mr.eids <- getPathsAsEIDs(paths, metabolic.net)
mr.layout = layout(metabolic.net)
if(is.null(names(path.col))){
if( !is.null(names(mr.eids)) ) mr.eids <- unlist(mr.eids, recursive=FALSE)
highlightPaths(mr.eids, metabolic.net, layout=mr.layout, path.col = path.col, main="Metabolic Network", ...)
}else
lapply(names(mr.eids), function(x)
highlightPaths(mr.eids[[x]], metabolic.net, layout=mr.layout, path.col= path.col[[x]],
main=paste("Metabolic Network y=",x), ...))
}
# Plotting reaction network
if(!is.null(reaction.net)){
r.eids <- getPathsAsEIDs(paths, reaction.net)
if(!is.null(metabolic.net)){
reaction.coor = match(V(reaction.net)$name,V(metabolic.net)$name)
r.layout <- mr.layout[reaction.coor,] #use the same layout as metabolic net.
}else r.layout <- layout(reaction.net)
if(is.null(names(path.col))){
if( !is.null(names(r.eids)) ) r.eids <- unlist(r.eids, recursive=FALSE)
highlightPaths(r.eids, reaction.net, layout=r.layout, path.col= path.col, main="Reaction Network", ...)
}else
lapply(names(r.eids), function(x)
highlightPaths(r.eids[[x]], reaction.net, layout=r.layout, path.col= path.col[[x]],
main=paste("Reaction Network y=",x), ...))
}
# Plotting gene network
if(!is.null(gene.net)){
g.eids <- getPathsAsEIDs(paths, gene.net)
g.layout <- NULL
if(!is.null(metabolic.net)){ #use metabolic.net layout as reference
gene.coor <- match( sub("^(.*)##", "",V(gene.net)$name), V(metabolic.net)$name)
g.layout <- mr.layout
}else if(!is.null(reaction.net)){ #use reaction.net layout as reference
gene.coor <- match( sub("^(.*)##", "",V(gene.net)$name), V(reaction.net)$name)
g.layout <- r.layout
}
if(!is.null(g.layout)){
minx = rep(-100, vcount(gene.net)); maxx = rep(100, vcount(gene.net))
miny = rep(-100, vcount(gene.net)); maxy = rep(100, vcount(gene.net))
minx = g.layout[gene.coor,1]; maxx = g.layout[gene.coor,1]
miny = g.layout[gene.coor,2]; maxy = g.layout[gene.coor,2]
g.layout = layout.fruchterman.reingold(gene.net, minx = minx, maxx = maxx, miny = miny, maxy = maxy)
}else g.layout <- layout(gene.net)
if(is.null(names(path.col))){
if( !is.null(names(g.eids)) ) g.eids <- unlist(g.eids, recursive=FALSE)
highlightPaths(g.eids, gene.net, layout=g.layout, path.col= path.col, main="Gene Network", ...)
}else
lapply(names(g.eids), function(x)
highlightPaths(g.eids[[x]], gene.net, layout=g.layout, path.col= path.col[[x]],
main=paste("Gene Network y=",x), ...))
}
}
process.layout <- function(paths, numPlots, clusters, plot.clusters){
# Setting the layout of the plot
par(omi=c(0,0,0, par("pin")[1]*0.2), new=!par("page"))
if(length(paths$y.labels)==1){
if(!is.null(clusters) && plot.clusters){
if(numPlots >1){layout.mat = c(1:numPlots, rep(numPlots+1, numPlots-1), numPlots+2)}
else{layout.mat = c(1,1,2,3)}
graphics::layout(matrix(layout.mat, 2, byrow=TRUE))
par(mar=c(0,0,2,0)+0.1)
}else{ par(mfrow=c(1,numPlots), mar=c(0,0,2,0)+0.1)}
}else{
if(!is.null(clusters) && plot.clusters){
if(numPlots >1){layout.mat = c(1:numPlots, rep(numPlots+1, numPlots-1), numPlots+2)}
else{layout.mat = c(1,1,2,3)}
graphics::layout(matrix(layout.mat, 2, byrow=TRUE))
par(mar=c(0,0,2,0)+0.1)
}else{ par(mfrow=c(length(paths$y.labels),numPlots), mar=c(0,0,2,0)+0.1)}
}
}
process.color <- function(col.palette, paths, clusters, same.plot){
#cat("Entering color"); flush.console()
numPaths <- ifelse(length(paths$y.labels)>1, length(unlist(paths$paths, recursive=FALSE)), length(paths$paths))
#cat("no problem"); flush.console()
if(!is.function(col.palette))
col.palette <- colorRampPalette(col.palette)
legend.info <- list()
if(same.plot){ # Plotting paths belonging to all y labels on the same net.
path.col <- col.palette(2)[clusters$y+1]
path.col <- alpha(path.col, clusters$posterior.probs)
legend.info <- setNames(c(NA, col.palette(2)), c("Y lables", "y = 0", "y = 1"))
}else if(is.null(clusters)){
if(length(paths$y.labels)>1)
path.col <- lapply(paths$paths, function(x) alpha(col.palette(length(x)), 0.3))
else path.col <- alpha(col.palette(length(paths$paths)), 0.3)
}else{
# Clusters are provided. Assign path colors by cluster.
if(!is.null(clusters$y)){
path.col <- col.palette(clusters$param$M)[clusters$component]
#set transparency as the probability that a path belongs to its corresponding cluster.
path.col <- alpha(path.col, clusters$path.probabilities[matrix(c(1:length(clusters$component),clusters$component), ncol=2)])
path.label <- sapply(1:length(paths$paths), function(x) rep(names(paths$paths)[[x]], length(paths$paths[[x]])))
path.col <- split(path.col, unlist(path.label))
}else{
path.col <- col.palette(clusters$param$M)[clusters$labels]
#set transparency as the probability that a path belongs to its corresponding cluster.
path.col <- alpha(path.col, clusters$h[matrix(c(1:length(clusters$labels),clusters$labels), ncol=2)])
if(length(paths$y.labels)>1){
path.label <- sapply(1:length(paths$paths), function(x) rep(names(paths$paths)[[x]], length(paths$paths[[x]])))
path.col <- split(path.col, unlist(path.label))
}
}
# Legend info showing cluster colors.
legend.info <- setNames(c(NA, col.palette(clusters$param$M)),
c( "Path Clusters", paste("M",1:clusters$params$M, sep="") ) )
}
return(list(path.col, legend.info))
}
graph.sizes <- function(v, devsize = min(par("pin"))){
vsize <- (devsize*200)/v
if(vsize < 1) vsize <- 1
if(vsize > 15) vsize <- 15
earrow <- vsize*0.08
if(earrow < 0.2) earrow <- 0.2
if(earrow > 1) earrow <- 1
label <- earrow*1.5
if(label>1) label <- 1
return(list(vsize=vsize, earrow=earrow, label=label))
}
drawLegend <- function(vertices, paths){
target.w <- par()$omi[4]
par(omi=c(0,0,0,0), mar= c(0,0,0,0), new=TRUE)
par(fig=c(0,1,0,1), new=TRUE)
plot.new()
legend.info <- character()
lty <- numeric()
lwd <- numeric()
pch <- numeric()
font <- numeric()
if(!missing(vertices) && length(vertices)>0){
legend.info <- c(legend.info, vertices)
lty <- c(lty , rep(NA, length(vertices)) )
lwd <- c(lwd , rep(NA, length(vertices)) )
pch <- c(pch , rep(16, length(vertices)) )
font <- pch <- c(font , 2 ,rep(16, length(vertices)-1) ) # Boldface for legend section.
}
if(!missing(paths) && length(paths)>0){
legend.info <- c(legend.info, paths)
lty <- c(lty , rep(1, length(paths)) )
lwd <- c(lwd , rep(5, length(paths)) )
pch <- c(pch , rep(NA, length(paths)) )
font <- c(font , 2 ,rep(16, length(paths)-1) ) # Boldface for legend section.
}
l.names <- names(legend.info)
l.cex <- 1
usr2inches <- strwidth("exmpleexmpleexmple", units="inches")/strwidth("exmpleexmpleexmple", units="user")
lw <-legend(x="topright", legend=l.names, lty=1, cex=l.cex, plot=FALSE)$rect$w * usr2inches
if(lw > target.w){
l.cex <- l.cex * target.w/lw
if(l.cex < 0.5){
l.cex <- 0.5
lw <-legend(x="topright", legend=l.names, lty=1, cex=l.cex, plot=FALSE)$rect$w * usr2inches
names.w <- floor(max(nchar(l.names)) * target.w/lw)
l.names <- strWrap(l.names, width=names.w)
par(lheight=0.7)
}
}
legend(x="topright", legend=l.names, lty=lty, lwd=lwd,pch=pch, col=legend.info,
title="Legend", text.font=font, cex=l.cex,xpd=NA)
}
toGML <- function(attr, element, collapse=NULL){
l <- length(attr)
num <- sapply(attr,is.numeric) & !sapply(attr,function(x) any(is.na(x)))
# Formats create sprintf formulas for GML formatting.
# In general, GML format follow the pattern: attr.name attr.val \n
# Attribute string values are quoted.
#
# Format1 deals with attribute names.
# Format2 deals with attribute values.
# Format interwines format1 and format2, and supply it to sprintf method.
format1 <- paste('%',1:l,'$s ', sep='') # attribute names exported as strings.
format1[names(attr)== "graphics"] <- ''
format2 <- paste('%', (1:l) + l,'$', ifelse(num, 'g', 's'), sep='')
format2 <- paste(ifelse(num, '', '"'),
format2,
ifelse(num, '\n', '"\n'),
sep='')
format2[names(attr)== "graphics"] <- paste('%', which(names(attr)== "graphics") + l, '$s\n', sep='')
format <- paste(t(cbind(format1, format2)), collapse='')
format <- paste(element, '[\n', format, ']')
ret <- paste( do.call(function(...) sprintf(format, ...), c(names(attr), attr)) ,collapse=collapse)
return(ret)
}
strWrap <- function(s, width=20){
for(i in 1:(floor( max(nchar(s))/ width )+1) ){
s <- gsub( paste( "(^| |\n)(.{", width-2, ",", width, "}) ", sep=""),"\\1\\2\n", s , perl=TRUE)
s <- gsub( paste( "(((?!\n).){", width, "})((?!\n).{1,})", sep=""),
"\\1\n\\3",s, perl=TRUE) #Check for words longers
}
return(s)
}
# Adapted from "scales" package
alpha <- function (colour, alpha = NA){
col <- col2rgb(colour, TRUE)/255
if (length(colour) != length(alpha)) {
if (length(colour) > 1 && length(alpha) > 1) {
stop("Only one of colour and alpha can be vectorised")
}
if (length(colour) > 1) {
alpha <- rep(alpha, length.out = length(colour))
}
else if (length(alpha) > 1) {
col <- col[, rep(1, length(alpha)), drop = FALSE]
}
}
alpha[is.na(alpha)] <- col[4, ][is.na(alpha)]
new_col <- rgb(col[1, ], col[2, ], col[3, ], alpha)
new_col[is.na(colour)] <- NA
new_col
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.