#' @rdname get_params
#'
#' @param x an object of class \code{\link{SconeExperiment}}.
#'
#' @return A data.frame containing workflow parameters for each scone workflow.
#'
#' @export
#'
setMethod(
f = "get_params",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
return(x@scone_params)
})
#' @rdname get_scores
#'
#' @param x an object of class \code{\link{SconeExperiment}}.
#'
#' @return \code{get_scores} returns a matrix with all (non-missing) scone
#' scores, ordered by average score rank.
#'
#' @export
#'
setMethod(
f = "get_scores",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
scores <- t(na.omit(t(x@scone_scores[,-NCOL(x@scone_scores)])))
return(scores)
})
#' @rdname get_scores
#'
#' @return \code{get_score_ranks} returns a vector of average score ranks.
#'
#' @export
#'
setMethod(
f = "get_score_ranks",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
return(x@scone_scores[,NCOL(x@scone_scores)])
})
#' @rdname get_negconruv
#'
#' @param x an object of class \code{\link{SconeExperiment}}.
#'
#' @return NULL or a logical vector.
#'
#' @return For \code{get_negconruv} the returned vector indicates which genes
#' are negative controls to be used for RUV.
#'
#' @export
#'
setMethod(
f = "get_negconruv",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_negconruv) == 0) {
return(NULL)
} else {
return(rowData(x)[,x@which_negconruv])
}
}
)
#' @rdname get_negconruv
#'
#' @return For \code{get_negconeval} the returned vector indicates which genes
#' are negative controls to be used for evaluation.
#'
#' @export
#'
setMethod(
f = "get_negconeval",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_negconeval) == 0) {
return(NULL)
} else {
return(rowData(x)[,x@which_negconeval])
}
}
)
#' @rdname get_negconruv
#'
#' @return For \code{get_poscon} the returned vector indicates which genes are
#' positive controls to be used for evaluation.
#'
#' @export
#'
setMethod(
f = "get_poscon",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_poscon) == 0) {
return(NULL)
} else {
return(rowData(x)[,x@which_poscon])
}
}
)
#' @rdname get_qc
#'
#' @param x an object of class \code{\link{SconeExperiment}}.
#'
#' @return NULL or the quality control (QC) metric matrix.
#'
#' @export
#'
setMethod(
f = "get_qc",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_qc) == 0) {
return(NULL)
} else {
retval <- as.matrix(colData(x)[, x@which_qc, drop=FALSE])
return(retval)
}
}
)
#' @rdname get_bio
#'
#' @param x an object of class \code{\link{SconeExperiment}}.
#'
#' @return NULL or a factor containing bio or batch covariate.
#'
#' @export
#'
setMethod(
f = "get_bio",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_bio) == 0) {
return(NULL)
} else {
return(colData(x)[,x@which_bio])
}
}
)
#' @rdname get_bio
#'
#' @export
#'
setMethod(
f = "get_batch",
signature = signature(x = "SconeExperiment"),
definition = function(x) {
if(length(x@which_batch) == 0) {
return(NULL)
} else {
return(colData(x)[,x@which_batch])
}
}
)
#' Parse rows
#'
#' This function is used internally in scone to parse the variables used to
#' generate the design matrices.
#'
#' @param pars character. A vector of parameters corresponding to a row of
#' workflow parameters.
#' @param bio factor. The biological covariate.
#' @param batch factor. The batch covariate.
#' @param ruv_factors list. A list containing the factors of unwanted variation
#' (RUVg) for all upstream workflows.
#' @param qc matrix. The principal components of the QC metric matrix.
#'
#' @return A list with the variables to be passed to make_design.
#'
#' @keywords internal
#'
.parse_row <- function(pars, bio, batch, ruv_factors, qc) {
# Define upstream workflow: imputation x scaling
sc_name <- paste(pars[1:2], collapse="_")
W <- out_bio <- out_batch <- NULL
if(pars[3]!="no_uv") {
parsed <- strsplit(as.character(pars[3]), "=")[[1]]
if(grepl("ruv", parsed[1])) {
W <- ruv_factors[[sc_name]][,seq_len(as.numeric(parsed[2]))]
} else {
W <- qc[,seq_len(as.numeric(parsed[2]))]
}
}
if(pars[4]=="bio") {
out_bio <- bio
}
if(pars[5]=="batch") {
out_batch <- batch
}
return(list(sc_name=sc_name, W=W, bio=out_bio, batch=out_batch))
}
#' Make a Design Matrix
#'
#' This function builds a design matrix for the Adjustment Normalization Step,
#' in which covariates are two (possibly nested) categorical factors and one or
#' more continuous variables.
#'
#' @details If nested=TRUE a nested design is used, i.e. the batch variable is
#' assumed to be nested within the bio variable. Here, nested means that each
#' batch is composed of samples from only *one* level of bio, while each
#' level of bio may contain multiple batches.
#'
#' @export
#'
#' @param bio factor. The biological covariate.
#' @param batch factor. The batch covariate.
#' @param W numeric. Either a vector or matrix containing one or more
#' continuous covariates (e.g. RUVg factors).
#' @param nested logical. Whether or not to consider a nested design
#' (see details).
#'
#' @return The design matrix.
#'
#' @examples
#'
#' bio = as.factor(rep(c(1,2),each = 2))
#' batch = as.factor(rep(c(1,2),2))
#' design_mat = make_design(bio,batch, W = NULL)
#'
make_design <- function(bio, batch, W, nested=FALSE) {
if(nested & (is.null(bio) | is.null(batch))) {
stop("Nested design can be used only if both batch and bio are specified.")
}
if(!is.null(bio)) {
if(class(bio)!="factor") {
stop("bio must be a factor.")
}
}
if(!is.null(batch)){
if(class(batch)!="factor") {
stop("batch must be a factor.")
}
}
f <- "~ 1"
if(!is.null(bio)) {
f <- paste(f, "bio", sep="+")
}
if(!is.null(batch)) {
f <- paste(f, "batch", sep="+")
}
if(!is.null(W)) {
f <- paste(f, "W", sep="+")
}
if(is.null(bio) & is.null(batch) & is.null(W)) {
return(NULL)
} else if (!is.null(bio) & !is.null(batch) & nested) {
n_vec <- tapply(batch, bio, function(x) nlevels(droplevels(x)))
mat = matrix(0,nrow = sum(n_vec),ncol = sum(n_vec - 1))
xi = 1
yi = 1
for(i in 1:length(n_vec)){
if(n_vec[i] > 1){
cs = contr.sum(n_vec[i])
dd = dim(cs)
mat[xi:(xi + dd[1] - 1),yi:(yi + dd[2] - 1)] = cs
xi = xi + dd[1]
yi = yi + dd[2]
}else{
xi = xi + 1
}
}
return(model.matrix(as.formula(f),
contrasts=list(bio=contr.sum, batch=mat)))
} else {
return(model.matrix(as.formula(f)))
}
}
#' Linear Adjustment Normalization
#'
#' Given a matrix with log expression values and a design matrix, this function
#' fits a linear model and removes the effects of the batch factor
#' as well as of the linear variables encoded in W.
#'
#' @details The function assumes that the columns of the design matrix
#' corresponding to the variable for which expression needs to be adjusted,
#' start with either the word "batch" or the letter "W" (case sensitive). Any
#' other covariate (including the intercept) is kept.
#'
#' @importFrom limma lmFit
#' @export
#'
#' @param log_expr matrix. The log gene expression (genes in row, samples in
#' columns).
#' @param design_mat matrix. The design matrix (usually the result of
#' make_design).
#' @param batch factor. A factor with the batch information, identifying batch
#' effect to be removed.
#' @param weights matrix. A matrix of weights.
#' @return The corrected log gene expression.
#'
#' @examples
#'
#' set.seed(141)
#' bio = as.factor(rep(c(1,2),each = 2))
#' batch = as.factor(rep(c(1,2),2))
#' design_mat = make_design(bio,batch, W = NULL)
#'
#' log_expr = matrix(rnorm(20),ncol = 4)
#' adjusted_log_expr = lm_adjust(log_expr = log_expr,
#' design_mat = design_mat,
#' batch = batch)
#'
lm_adjust <- function(log_expr, design_mat, batch=NULL, weights=NULL) {
lm_object <- lmFit(log_expr, design = design_mat, weights = weights)
uvind <- grep("^W", colnames(design_mat))
bind <- grep("^batch", colnames(design_mat))
if(length(uvind)) {
uv_term <- t(design_mat[,uvind] %*% t(lm_object$coefficients[,uvind]))
} else {
uv_term <- 0
}
if(length(bind)) {
if(is.character(attr(design_mat,"contrasts")$batch)) {
contr <- get(attr(design_mat,"contrasts")$batch)(nlevels(batch))
} else {
contr <- attr(design_mat,"contrasts")$batch
}
batch_term <- t(contr %*% t(lm_object$coefficients[,bind]))[,batch]
} else {
batch_term <- 0
}
return(log_expr - batch_term - uv_term)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.