#' Initializes a new VISION object.
#'
#' @import logging
#'
#' @param data expression data - can be one of these: \itemize{
#' \item numeric matrix or sparse matrix (GENES x CELLS)
#' \item data.frame (GENES x CELLS)
#' \item ExpressionSet object
#' \item SummzrizedExperiment object (or extending classes)
#' }
#' Expression data should be scaled and normalized, but not log-transformed.
#' @param signatures list of file paths to signature files (.gmt or .txt) or
#' Signature objects. See the createGeneSignature(...) method for information
#' on creating Signature objects.
#' @param proteinData additional protein abundance data (such as ADT counts).
#' Can be either a data.frame or numeric matrix. Should be of shape (CELLS x PROTEINS)
#' @param meta data.frame with meta-data for cells. Rows in this data.frame should correspond
#' with columns in the expression data matrix
#' @param projection_genes name of filtering method ('threshold' or 'fano') or list of
#' genes to use when computing projections.
#' @param min_signature_genes Signature that match less than this number of genes in the
#' supplied expression matrix are removed.
#' @param sig_gene_threshold Proportion of cells that a gene must be detected in (nonzero)
#' to be used in signature score calculations.
#' @param threshold Threshold to apply when using the 'threshold' or 'fano' projection genes filter.
#' If greater than 1, this specifies the number of cells in which a gene must be detected
#' for it to be used when computing PCA. If less than 1, this instead specifies the proportion of cells needed
#' @param perm_wPCA If TRUE, apply permutation procedure to calculate significant
#' number of PCs when running PCA. If FALSE (default), retain the top 30.
#' @param sig_norm_method Method to apply to normalize the expression matrix
#' before calculating signature scores. Valid options are:
#' "znorm_columns" (default), "none", "znorm_rows", "znorm_rows_then_columns",
#' or "rank_norm_columns"
#' @param pool indicates whether or not to pool cells into supercells. Acceptable values
#' are TRUE, FALSE, or 'auto', the last of which is the default and enables
#' pooling if there are more than 100000 cells.
#' @param pools assignments of cell to micropool. Used when microclustering batches
#' separately and then combining. See vignette for usage.
#' @param cellsPerPartition the target number of cells to put into a supercell when pooling
#' @param latentSpace latent space for expression data. Numeric matrix or dataframe
#' with dimensions CELLS x COMPONENTS
#' @param latentSpaceName a name for the latent space method (used in output report)
#' @param latentTrajectory trajectory to model cell progression. Wrapped result
#' of a trajectory inference method by the dynverse/dynwrap library
#' @param tree a phylo object
#' @param hotspot a list containing one hotspot object precomputed in python and loaded in via reticulate
#' @param modData a list of signature objects for user defined modules
#' @param projection_methods a character vector specifying which projection methods to apply. Can be: \itemize{
#' \item tSNE10 (tSNE with perplexity 10)
#' \item tSNE30 (tSNE with perplexity 30)
#' \item ICA
#' \item ISOMap
#' \item RBFPCA
#' \item UMAP
#'}
#' By default will perform tSNE and PCA on the data.
#' @param name a name for the sample - shown on the output report
#' @param num_neighbors the number of neighbors to consider for downstream analyses.'
#' @param unnormalizedData data.frame or numeric matrix (dense or sparse) - used
#' when displaying gene expression values in the output report. If supplied
#' this overrides the input in `data` but only when visualizing data.
#' @return A VISION object
#' @rdname VISION-class
#' @export
#' @examples
#' \dontrun{
#' expMat <- read.csv("expressionMatrix.csv", row.names=1)
#' meta <- read.csv("metaData.csv", row.names=1)
#'
#' sigs <- c("/path/to/signatures/msigdb_Hallmark.gmt",
#' "/path/to/signatures/Enrichr/ChEA_2015.txt"
#' )
#'
#'
#' vis <- Vision(data = expMat,
#' signatures = sigs,
#' meta = meta)
#' }
setMethod("Vision", signature(data = "matrixORSparse"),
function(data, signatures=list(),
proteinData=NULL,
unnormalizedData = NULL, meta=NULL,
projection_genes=c("fano"),
min_signature_genes=5,
sig_gene_threshold=.001,
threshold=.05, perm_wPCA=FALSE,
projection_methods = c("tSNE30"),
sig_norm_method = c("znorm_columns", "none", "znorm_rows",
"znorm_rows_then_columns",
"rank_norm_columns"),
pool="auto", cellsPerPartition=10, name=NULL, num_neighbors = NULL,
latentSpace = NULL, latentSpaceName = NULL, latentTrajectory = NULL,
tree = NULL, modData = list(), hotspot= NULL, pools=list()) {
.Object <- new("Vision")
if (is.null(rownames(data))) {
stop("rownames(data) = NULL. Expression matrix must have gene names as the rownames")
}
if (is.null(colnames(data))) {
colnames(data) <- paste0("cell", seq(ncol(data)))
}
# Initialize parameter structure
.Object@params$latentSpace <- list()
.Object@params$signatures <- list()
.Object@params$micropooling <- list()
toRemove <- rownames(data)[duplicated(rownames(data))]
if (length(toRemove) > 0){
message(sprintf(
"\nRemoving %i genes with duplicate IDs (ignoring case): %s\n",
length(toRemove) + length(unique(toRemove)),
paste(unique(toRemove), collapse = ", ")
)
)
data <- data[ !(rownames(data) %in% toRemove), , drop = FALSE]
}
if (!is.null(tree)) {
# Subset matrix
data <- data[,tree$tip.label]
# Subset Tree
tree <- keep.tip(tree, colnames(data))
}
.Object@exprData <- data
if (!is.null(unnormalizedData)){
if (is.data.frame(unnormalizedData)){
unnormalizedData <- data.matrix(unnormalizedData)
}
if (is(unnormalizedData, "sparseMatrix")) {
unnormalizedData <- as(unnormalizedData, "dgCMatrix")
}
if (is(unnormalizedData, "dgeMatrix")) {
unnormalizedData <- as.matrix(unnormalizedData)
}
# unnormalizedData might have more genes than exprData
# and it might have more cells than exprData
HAS_CORRECT_CELLS <- length(setdiff(
colnames(.Object@exprData),
colnames(unnormalizedData)
)) == 0
if (!HAS_CORRECT_CELLS) {
stop("unnormalizedData must have a column for all cells in data. colnames(unnormalizedData) must contain all labels in colnames(data)")
}
HAS_CORRECT_GENES <- length(setdiff(
rownames(.Object@exprData),
rownames(unnormalizedData)
)) == 0
if (!HAS_CORRECT_GENES) {
stop("unnormalizedData must have a row for all genes in data. rownames(unnormalizedData) must contain all labels in rownames(data)")
}
if (any(unnormalizedData < 0)) {
stop("Negative values in unnormalizedData. unnormalizedData should be either counts or scaled counts and should therefore have no negative values")
}
.Object@unnormalizedData <- unnormalizedData
} else {
.Object@unnormalizedData <- matrix(NA, 1, 1)
}
if (!is.null(proteinData)){
if (is.data.frame(proteinData)){
proteinData <- data.matrix(proteinData)
}
if (is(proteinData, "Matrix")) { # Make sure to use regular matrix
proteinData <- as.matrix(proteinData)
}
HAS_CORRECT_CELLS <- length(setdiff(
colnames(.Object@exprData),
rownames(proteinData)
)) == 0
if (!HAS_CORRECT_CELLS) {
stop("proteinData must have a row for all cells in data. rownames(proteinData) must contain all labels in colnames(data)")
}
if (!all(rownames(proteinData) == colnames(.Object@exprData))){
proteinData <- proteinData[colnames(.Object@exprData), , drop = FALSE]
}
colnames(proteinData) <- make.unique(colnames(proteinData))
.Object@proteinData <- proteinData
.Object@Projections[["Proteins"]] <- proteinData
} else {
.Object@proteinData <- matrix(NA, 1, 1)
}
if (is.list(signatures)) {
sigs <- lapply(signatures, function(sig){
if (is(sig, "Signature")){
return(sig)
} else {
return(readSignaturesInput(sig))
}
})
if (length(sigs) > 0){
.Object@sigData <- do.call(c, sigs)
} else {
.Object@sigData <- sigs
}
names(.Object@sigData) <- vapply(.Object@sigData,
function(x){x@name}, "")
} else if (is.character(signatures)) {
.Object@sigData <- readSignaturesInput(signatures)
} else {
stop("signatures must be paths to signature files or list of
Signature objects")
}
.Object@sigData <- processSignatures(.Object@sigData, .Object@exprData, min_signature_genes, sig_gene_threshold)
if (!is.null(meta)) {
if(is.matrix(meta)){
meta <- as.data.frame(meta)
}
if(is.data.frame(meta)) {
sampleLabels <- colnames(.Object@exprData)
common <- intersect(row.names(meta), sampleLabels)
if (length(common) != length(sampleLabels)){
stop("Provided meta data dataframe must have same sample labels as the expression matrix")
}
# Convert strings to factors if less than 20 unique
metaVars <- colnames(meta)
for(var in metaVars){
vals <- meta[, var]
if (is.character(vals)){
n_unique <- length(unique(vals))
if (n_unique <= 20){
meta[, var] <- as.factor(vals)
} else {
meta[, var] <- NULL
message(paste0("Dropping '", var, "' from meta data as it is of type 'character' and has more than 20 unique values. If you want to include this meta data variable, convert it to a factor before providing the data frame to Vision"))
}
}
if (is.logical(vals)){
meta[, var] <- as.factor(vals)
}
}
.Object@metaData <- meta[sampleLabels, , drop = FALSE]
} else {
stop("meta input argument should be a matrix or dataframe")
}
} else {
.Object@metaData <- data.frame(
row.names = colnames(.Object@exprData)
)
}
if (length(projection_genes) == 1 &&
tolower(projection_genes) %in% c("fano", "threshold")){
.Object@params$latentSpace$projectionGenesMethod <- projection_genes
.Object@params$latentSpace$projectionGenes <- NA
} else {
.Object@params$latentSpace$projectionGenesMethod <- NA
.Object@params$latentSpace$projectionGenes <- projection_genes
.Object@params$latentSpace$projectionGenes = intersect(rownames(.Object@exprData),
.Object@params$latentSpace$projectionGenes)
}
if (threshold < 1) {
num_samples <- ncol(.Object@exprData)
threshold <- round(threshold * num_samples)
}
.Object@params$signatures$sigNormMethod <- match.arg(sig_norm_method)
.Object@params$latentSpace$threshold <- threshold
.Object@params$latentSpace$permPCA <- perm_wPCA
valid_projections <- c("tSNE10", "tSNE30", "ICA", "ISOMap", "RBFPCA", "UMAP")
check <- sapply(projection_methods, function(x) x %in% valid_projections)
if (! all(check)) {
stop("Bad value in 'projection_methods'. Please choose from tSNE10, tSNE30, ICA, ISOMap, UMAP, or RBFPCA.")
}
if ("UMAP" %in% projection_methods){
if (!requireNamespace("uwot", quietly = TRUE)){
stop("Package \"uwot\" needed to run UMAP. Please install it using:\n\n devtools::install_github(\"jlmelville/uwot\")\n\n",
call. = FALSE)
}
}
if(length(projection_methods) == 0){
projection_methods <- character()
}
.Object@params$projectionMethods <- projection_methods
LOTS_OF_CELLS <- ncol(.Object@exprData) > 100000
if (is.character(pool))
{
pool <- tolower(pool)
if (pool == 'auto')
{
if(LOTS_OF_CELLS) {
pool <- TRUE
message(paste(
"Over 100000 input cells detected. Enabling micropooling with max",
cellsPerPartition, "cells per pool."
)
)
} else {
pool <- FALSE
}
} else {
stop("Bad value for 'pool' argument")
}
}
if (LOTS_OF_CELLS && !pool) {
message(paste(
"Warning: Input data consists of",
ncol(.Object@exprData),
"cells and pool=FALSE. It is recommend to set pool=TRUE when running on large numbers of cells"
)
)
}
.Object@params$micropooling$pool = pool
.Object@params$micropooling$cellsPerPartition = cellsPerPartition
if (!is.null(name)) {
.Object@params$name <- name
} else {
.Object@params$name <- ""
}
if (!is.null(latentSpace)) {
if (is.data.frame(latentSpace)){
latentSpace <- data.matrix(latentSpace)
}
sample_names <- colnames(.Object@exprData)
common <- intersect(sample_names, rownames(latentSpace))
if (length(common) != nrow(latentSpace)){
stop("Supplied coordinates for latentSpace must have rowlabels that match sample/cell names")
}
latentSpace <- latentSpace[colnames(.Object@exprData), ]
colnames(latentSpace) <- NULL
.Object@LatentSpace <- latentSpace
}
if (!is.null(latentTrajectory)) {
if (!(
"milestone_network" %in% names(latentTrajectory) &&
"progressions" %in% names(latentTrajectory)
)){
stop("latentTrajectory must be a wrapped method using the dynverse/dynmethods library.")
}
.Object@LatentTrajectory <- Trajectory(latentTrajectory)
sample_names <- colnames(.Object@exprData)
if (length(
setdiff(
sample_names,
rownames(.Object@LatentTrajectory@progressions)
)
) > 0) {
stop("Supplied progressions for latentTrajectory must have cell_ids that match sample/cell names")
}
.Object@LatentTrajectory@progressions <-
.Object@LatentTrajectory@progressions[sample_names, , drop = FALSE]
newMeta <- createTrajectoryMetaData(.Object@LatentTrajectory)
newMeta <- newMeta[rownames(.Object@metaData), ]
.Object@metaData <- cbind(.Object@metaData, newMeta)
}
.Object@Pools <- pools
if (!is.null(num_neighbors)) {
.Object@params$numNeighbors <- num_neighbors
} else {
.Object@params$numNeighbors <- round((sqrt(ncol(.Object@exprData))))
}
if (is.null(latentSpaceName)){
.Object@params$latentSpace$Name <- NULL
} else {
.Object@params$latentSpace$Name <- latentSpaceName
}
.Object@modData <- modData
.Object@Hotspot <- hotspot
.Object@ModuleSignatureEnrichment <- list()
.Object@ModuleHotspotScores = data.frame()
return(.Object)
}
)
#' Initializes a new PhyloVision Object
#'
#' @param tree parsed ape tree
#' @param ... arguments passed to the base Vision constructor
#' @rdname PhyloVision-class
#' @export
setMethod("PhyloVision", signature(tree="phylo"),
function(tree, ...) {
obj <- Vision(...)
obj <- new("PhyloVision", obj, tree=tree)
return(obj)
}
)
#' @rdname VISION-class
#' @param ... arguments passed to the base Vision constructor
#' @export
setMethod("Vision", signature(data = "data.frame"),
function(data, ...) {
data <- data.matrix(data)
return(Vision(data, ...))
}
)
#' @rdname VISION-class
#' @export
setMethod("Vision", signature(data = "sparseMatrix"),
function(data, ...) {
data <- as(data, "dgCMatrix")
return(Vision(data, ...))
}
)
#' @rdname VISION-class
#' @export
setMethod("Vision", signature(data = "dgeMatrix"),
function(data, ...) {
data <- as.matrix(data)
return(Vision(data, ...))
}
)
#' @rdname VISION-class
#' @export
setMethod("Vision", signature(data = "ExpressionSet"),
function(data, ...) {
if (!requireNamespace("Biobase", quietly = TRUE)){
stop("Package \"Biobase\" needed to load this data object. Please install it.",
call. = FALSE)
}
return(Vision(Biobase::exprs(data), ...))
}
)
#' @rdname VISION-class
#' @export
setMethod("Vision", signature(data = "SummarizedExperiment"),
function(data, ...) {
if (!requireNamespace("SummarizedExperiment", quietly = TRUE)){
stop("Package \"SummarizedExperiment\" needed to load this data object. Please install it.",
call. = FALSE)
}
return(Vision(SummarizedExperiment::assay(data), ...))
}
)
#' Create Vision object form a Seurat 2.X object
#'
#' Initializes a Vision object from an existing Seurat object taking any existing
#' expression data, meta-data, and dimensionality reductions if they exist already
#'
#' @rdname VISION-class
#' @param dimRed Dimensionality reduction to use for the latentSpace. Default is to
#' look for "pca" and use that if it exists
#' @param dimRedComponents number of components to use for the selected dimensionality
#' reduction. Default is to use all components
#' @export
setMethod("Vision", signature(data = "seurat"),
function(data, dimRed = NULL, dimRedComponents = NULL, ...) {
if (!requireNamespace("Seurat", quietly = TRUE)){
stop("Package \"Seurat\" needed to load this data object. Please install it.",
call. = FALSE)
}
obj <- data
args <- list(...)
# Get Unnormalized Data
message("Importing Raw Data from obj@raw.data ...")
unnormData <- obj@raw.data
totals <- colSums(unnormData)
scalefactor <- median(totals)
unnormData <- t(t(unnormData) / totals * scalefactor)
args[["unnormalizedData"]] <- unnormData
# Get Expression Data from seurat object
exprData <- NULL
if (!is.null(obj@scale.data)){
message("Importing Expression Data from obj@scale.data ...")
exprData <- ilog1p(obj@scale.data)
} else {
# Can't just check obj@data because this could be the raw
# data if NormalizeData hadn't been run and we would risk
# exponentiated non log-scale data
if ("NormalizeData" %in% names(obj@calc.params)){
message("Importing Expression Data from obj@data ...")
exprData <- ilog1p(obj@data)
} else {
exprData <- unnormData
}
}
args[["data"]] <- exprData
# Get meta data
if (!("meta" %in% names(args))){
message("Importing Meta Data from obj@meta ...")
args[["meta"]] <- obj@meta.data
}
# Get latent space
if (is.null(dimRed) && "pca" %in% names(obj@dr)) {
dimRed <- "pca"
}
if (!("latentSpace" %in% names(args))){
message(
sprintf("Importing latent space from reduction.type='%s' using first '%i' components",
dimRed, dimRedComponents
))
latentSpace <- Seurat::GetCellEmbeddings(obj,
reduction.type = dimRed,
dims.use = dimRedComponents
)
args[["latentSpace"]] <- latentSpace
}
vis <- do.call(Vision, args)
for (method in names(obj@dr)){
name <- paste0("Seurat_", method)
message(sprintf("Adding Visualization: %s", name))
coordinates <- Seurat::GetCellEmbeddings(obj,
reduction.type = method,
)
vis <- addProjection(vis,
name, coordinates
)
}
return(vis)
}
)
#' Create Vision object form a Seurat 3.X object
#'
#' Initializes a Vision object from an existing Seurat object taking any existing
#' expression data, meta-data, and dimensionality reductions if they exist already
#'
#' @rdname VISION-class
#' @param assay The assay slot in the Seurat object to use for expression data
#' @param dimRed Dimensionality reduction to use for the latentSpace. Default is to
#' look for "pca" and use that if it exists
#' @param dimRedComponents number of components to use for the selected dimensionality
#' reduction. Default is to use all components
#' @export
setMethod("Vision", signature(data = "Seurat"),
function(data, assay = "RNA", dimRed = NULL, dimRedComponents = NULL, ...) {
if (!requireNamespace("Seurat", quietly = TRUE)){
stop("Package \"Seurat\" needed to load this data object. Please install it.",
call. = FALSE)
}
obj <- data
args <- list(...)
# Get Expression Data from seurat object
# here we can't use @scale.data because it has been
# centered already
message(
sprintf("Importing counts from obj[[\"%s\"]]@counts ...", assay)
)
message("Normalizing to counts per 10,000...")
exprData <- obj[[assay]]@counts
totals <- colSums(exprData)
scalefactor <- 10000
exprData <- t(t(exprData) / totals * scalefactor)
args[["data"]] <- exprData
# Get meta data
if (!("meta" %in% names(args))){
message("Importing Meta Data from obj@meta.data ...")
args[["meta"]] <- obj@meta.data
}
# Get latent space
if (is.null(dimRed) && "pca" %in% Reductions(obj)) {
dimRed <- "pca"
}
if (!("latentSpace" %in% names(args))){
latentSpace <- Embeddings(obj,
reduction = dimRed
)
if (is.null(dimRedComponents)) {
dimRedComponents <- ncol(latentSpace)
}
latentSpace <- latentSpace[, 1:dimRedComponents]
message(
sprintf("Importing latent space from Embeddings(obj, \"%s\") using first %i components",
dimRed, dimRedComponents
))
args[["latentSpace"]] <- latentSpace
}
vis <- do.call(Vision, args)
for (method in names(obj@reductions)){
name <- paste0("Seurat_", method)
message(sprintf("Adding Visualization: %s", name))
coordinates <- Embeddings(obj,
reduction = method)
vis <- addProjection(vis,
name, coordinates
)
}
return(vis)
}
)
#' Main entry point for running VISION Analysis
#'
#' The main analysis function. Runs the entire VISION analysis pipeline
#' and returns a VISION object populated with the result.
#'
#' @export
#' @aliases analyze
#' @param object VISION object
#' @param tree whether to use the TREE slot of the object to calculate values
#' @return VISION object
#'
#' @examples
#' \dontrun{
#'
#' vis <- Vision(data = expMat, signatures = sigs)
#'
#' options(mc.cores=10) # Use 10 cores
#' vis <- analyze(vis)
#'
#' }
setMethod("analyze", signature(object="Vision"),
function(object, tree=FALSE, hotspot=FALSE) {
message("Beginning Analysis\n")
if (object@params$micropooling$pool || length(object@Pools) > 0) {
object <- poolCells(object)
}
# Populates @LatentSpace
if (all(dim(object@LatentSpace) == c(1, 1))) {
object <- computeLatentSpace(object)
}
object <- clusterCells(object, tree)
# Populates @Projections
object <- generateProjections(object)
# Populates @TrajectoryProjections
if (hasTrajectory(object)) {
object@TrajectoryProjections <- generateTrajectoryProjections(
object@LatentTrajectory
)
}
# Populates @SigScores and @SigGeneImportance
object <- calcSignatureScores(object)
# Performs plasticity analysis, and adds to @metaData
if (class(object) == 'PhyloVision') {
object <- computePlasticityScores(object)
}
# Populates @LocalAutocorrelation
object <- analyzeLocalCorrelations(object, tree)
# Populates @TrajectoryAutocorrelation
if (hasTrajectory(object)) {
object <- analyzeTrajectoryCorrelations(object)
}
# Populates @ClusterComparisons
object <- clusterSigScores(object)
# Populates #LCAnnotatorData
object <- annotateLatentComponents(object)
if (hotspot) {
message("Hotspot Analysis")
object <- runHotspot(object, model="danb", tree)
}
message("Analysis Complete!\n")
return(object)
})
#' Analyze a PhyloVision object
#'
#' @param ... arguments passed to the base Vision constructor
#' @aliases phyloAnalyze
#' @export
setMethod("phyloAnalyze", signature(object="PhyloVision"),
function(object, hotspot=FALSE) {
object <- analyze(object, tree=TRUE, hotspot=hotspot)
return(object)
})
#' Add a set of projection coordinates to use for visualization
#'
#' By default VISION will run tSNE on the latent space and use this
#' to display the cells in the output report. However, with this
#' method, you may add additional two-dimensional coordinates for
#' inclusion in the output report. This is useful if you have previously
#' run tSNE (or any other visualization method) and wish to integrate
#' the results into VISION.
#'
#' @export
#' @aliases addProjection
#' @param object VISION object
#' @param name Name of the projection
#' @param coordinates numeric matrix or data.frame. Coordinates of each
#' sample in the projection (NUM_SAMPLES x NUM_COMPONENTS)
#' @return VISION object
#' @examples
#' \dontrun{
#'
#' # First create the VISION object
#' vis <- Vision(data = expMat, signatures = sigs)
#'
#' # Load and add an additional visualization
#' my_umap <- read.csv("umap_results.csv")
#' vis <- addProjection(vis, "UMAP", my_umap)
#'
#' # Run analysis
#' vis <- analyze(vis)
#'
#' # View results
#' viewResults(vis)
#'
#' }
setMethod("addProjection", signature(object = "Vision"),
function(object, name, coordinates) {
if (is(coordinates, "data.frame")){
coordinates <- as.matrix(coordinates)
}
# Verify that projection coordinates are correct
samples <- object@exprData
SAME_SIZE <- ncol(samples) == nrow(coordinates)
SAME_NAMES <- setequal(colnames(samples), rownames(coordinates))
if (!SAME_SIZE || !SAME_NAMES){
stop("Supplied coordinates must have rowlabels that match sample/cell names")
}
if (is.null(colnames(coordinates))){
colnames(coordinates) <- paste0(name, "-", seq_len(ncol(coordinates)))
}
object@Projections[[name]] <- coordinates
return(object)
})
#' Save the VISION object as an .RDS file and view the results on a
#' localhost
#'
#' This is just a convience function wrapping two function calls
#'
#' saveAndViewResults(vis, 'vision_results.rds')
#'
#' is equivalent to:
#'
#' saveRDS(vis, 'vision_results.rds')
#' viewResults(vis)
#'
#' @param object VISION object
#' @param ofile the path to save the object in. If NULL, the object is saved
#' in the working directory [default:NULL]
#' @param port The port on which to serve the output viewer. If omitted, a
#' random port between 8000 and 9999 is chosen.
#' @param host The host used to serve the output viewer. If omitted, "127.0.0.1"
#' is used.
#' @param browser Whether or not to launch the browser automatically (default=TRUE)
#' @param name Name for the sample - is shown at the top of the output report
#' @return the path of the saved file
#' @aliases saveAndViewResults
#' @export
#' @examples
#' \dontrun{
#'
#' vis <- Vision(data = expMat, signatures = sigs)
#'
#' options(mc.cores=10) # Use 10 cores
#' vis <- analyze(vis)
#'
#' saveAndViewResults(vis, 'vision_results.rds') # Saves and launches dynamic output report
#' }
setMethod("saveAndViewResults", signature(object = "Vision"),
function(object, ofile=NULL, port=NULL, host=NULL,
browser=TRUE, name=NULL) {
if (is.null(ofile)) {
i <- 1
ofile <- paste0("./vis", i, ".rds")
while (file.exists(ofile)) {
i <- i + 1
ofile <- paste0("./vis", i, ".rds")
}
}
saveRDS(object, file = ofile)
viewResults(object, port, host, browser, name)
return(ofile)
})
#' View results of analysis
#'
#' launch a local server to explore the results with a browser.
#'
#' @param object VISION object or path to an RDS file containing such an
#' object (saved using saveAndViewResults, or directly using saveRDS)
#' @param port The port on which to serve the output viewer. If omitted, a
#' random port between 8000 and 9999 is chosen.
#' @param host The host used to serve the output viewer. If omitted, "127.0.0.1"
#' is used.
#' @param browser Whether or not to launch the browser automatically (default=TRUE)
#' @param name Name for the sample - is shown at the top of the output report
#' @aliases viewResults
#' @return None
#' @export
#' @rdname viewResults
#' @examples
#' \dontrun{
#'
#' vis <- Vision(data = expMat, signatures = sigs)
#'
#' options(mc.cores=10) # Use 10 cores
#' vis <- analyze(vis)
#'
#' saveRDS(vis, 'vision_results.rds') # (Optional) Save results
#'
#' vis <- viewResults(vis) # Launches dynamic output report
#' }
setMethod("viewResults", signature(object = "Vision"),
function(object, port=NULL, host=NULL, browser=TRUE, name=NULL) {
if (!is.null(name)) {
object@params$name <- name
}
versionCheck(object)
if (length(object@sigData) == 0 && ncol(object@metaData) == 0) {
stop("Error: This object contains no signature data.")
}
message("Launching the server...")
message("Press exit or ctrl c to exit")
object <- launchServer(object, port, host, browser)
return(object)
})
#' @rdname viewResults
#' @export
setMethod("viewResults", signature(object = "character"),
function(object, port=NULL, host=NULL, browser=TRUE, name=NULL) {
fpo <- readRDS(object)
if (!is(fpo, "Vision")){
stop("loaded object not a valid Vision object")
}
fpo <- viewResults(fpo, port, host, browser, name)
return(fpo)
})
#' Get saved selections
#'
#' Access saved groups of cell IDs defined while using the interactive output report
#'
#' This method allows you to retrieve saved selections later in R for downstream analyses
#'
#' Note: In order for selections to correctly save when launching the report, the report
#' must be run by storing the results back into the object.
#'
#' E.g.
#' \preformatted{vis <- viewResults(vis)}
#' and not
#' \preformatted{viewResults(vis)}
#'
#'
#' @param object VISION object
#' @return Named list of selections. Each selection is a character vector of cell/pool IDs
#' @export
#' @aliases getSelections
#' @rdname getSelections
#' @examples
#' \dontrun{
#'
#' vis <- viewResults(vis) # Selections saved while viewing results
#'
#' # Retrieve cell IDs for a selection group named 'interesting cells'
#' interestingCells <- getSelections(vis)[['interesting cells']]
#'
#' }
setMethod("getSelections", signature(object = "Vision"),
function(object) {
if ("selections" %in% names(object@Viewer)){
return(object@Viewer$selections)
} else {
return(list())
}
})
#' Get 2D views of the expression data
#'
#' This method provides access to the 2d projections that are used
#' to display results in the output report
#'
#' @param object VISION object
#' @return List of matrix (Cells x 2)
#' @export
#' @aliases getProjections
#' @rdname getProjections
#' @examples
#' \dontrun{
#'
#' # After running 'analyze'
#' # Retrieve tSNE30 (tSNE with perplexity 30) and plot it
#'
#' tsne <- getProjections(vis)[["tSNE30"]]
#'
#' plot(tsne[, 1], tsne[, 2])
#'
#' # To see the names of available projections, just run:
#'
#' names(getProjections(vis))
#'
#' }
setMethod("getProjections", signature(object = "Vision"),
function(object) {
return(object@Projections)
})
#' Get Latent Space
#'
#' Provides access to the latent space used for
#' local autocorrelation analysis
#'
#' If a latent trajectory was supplied, access it by using \code{getLatentTrajectory}
#' instead
#'
#' @param object VISION object
#' @return the latent space as a matrix of dimension (Cells x Components)
#' @export
#' @aliases getLatentSpace
#' @rdname getLatentSpace
setMethod("getLatentSpace", signature(object = "Vision"),
function(object) {
return(object@LatentSpace)
})
#' Get Latent Trajectory
#'
#' Provides access to the latent trajectory used for
#' local autocorrelation analysis
#'
#' If a latent space was supplied, access it by using \code{getLatentSpace}
#' instead
#'
#' @param object VISION object
#' @return Trajectory object
#' @export
#' @aliases getLatentTrajectory
#' @rdname getLatentTrajectory
#' @examples
#' \dontrun{
#'
#' trajectory <- getLatentTrajectory(vis)
#'
#' # MxM connectivity for network milestones
#' trajectory@adjMat
#'
#' # data.frame with the position of cells between milestones
#' # Columns are:
#' # cell
#' # from (milestone)
#' # to (milestone)
#' # position (0 to 1)
#' trajectory@progressions
#'
#' }
setMethod("getLatentTrajectory", signature(object = "Vision"),
function(object) {
return(object@LatentTrajectory)
})
#' Get Signature Scores
#'
#' Access to the signature scores computed by VISION
#'
#' @param object VISION object
#' @return Signature scores as a (Cells x Signature) matrix
#' @export
#' @aliases getSignatureScores
#' @rdname getSignatureScores
setMethod("getSignatureScores", signature(object = "Vision"),
function(object) {
return(object@SigScores)
})
#' Get Signature Autocorrelation Scores
#'
#' Access the local autocorrelation scores computed for signatures
#'
#' Local autocorrelation scores are calculated from the input latent
#' space (default's to PCA) or the input trajectory model (if provided)
#'
#' @param object VISION object
#' @return data.frame with columns 'C', 'pValue', and 'FDR'
#' @export
#' @aliases getSignatureAutocorrelation
#' @rdname getSignatureAutocorrelation
setMethod("getSignatureAutocorrelation", signature(object = "Vision"),
function(object) {
if (hasTrajectory(object)){
out <- object@TrajectoryAutocorrelation$Signatures
} else {
out <- object@LocalAutocorrelation$Signatures
}
out <- out[order(out$pValue, out$C * -1), ]
return(out)
})
#' Get MetaData Autocorrelation Scores
#'
#' Access the local autocorrelation scores computed for meta-data variables
#'
#' Local autocorrelation scores are calculated from the input latent
#' space (default's to PCA) or the input trajectory model (if provided)
#'
#' @param object VISION object
#' @return data.frame with columns 'C', 'pValue', and 'FDR'
#' @export
#' @aliases getMetaAutocorrelation
#' @rdname getMetaAutocorrelation
setMethod("getMetaAutocorrelation", signature(object = "Vision"),
function(object) {
if (hasTrajectory(object)){
out <- object@TrajectoryAutocorrelation$Meta
} else {
out <- object@LocalAutocorrelation$Meta
}
out <- out[order(out$pValue, out$C * -1), ]
return(out)
})
#' Get Results of One-vs-All Differential Signature Tests
#'
#' Returns the results of running one-vs-all differential signature
#' tests for each level of every factor meta-variable.
#'
#' The 'stat' variable refers to the AUC
#'
#' The output object has a nested structure:
#'
#' List of meta-data variables -> List of variable levels -> Results Dataframe
#'
#' The results dataframe has three columns: "stat", "pValue", "FDR"
#'
#' @param object VISION object
#' @return nested list of list of data.frame (see details)
#' @export
#' @aliases getSignatureDifferential
#' @rdname getSignatureDifferential
setMethod("getSignatureDifferential", signature(object = "Vision"),
function(object) {
# This is almost what we want to output, but needs some massaging
ClusterComparisons <- object@ClusterComparisons
if (length(ClusterComparisons) == 0){
return(ClusterComparisons)
}
return(ClusterComparisons$Signatures)
})
#' Get Results of One-vs-All Differential Tests with Metadata Variables
#'
#' Returns the results of running one-vs-all differential
#' tests for each level of every factor meta-variable.
#'
#' For numeric meta-variables, the 'stat' is the AUC. For factor meta-variables
#' the stat is the chisq statistic comparing the two groups
#'
#' The output object has a nested structure:
#'
#' List of meta-data variables -> List of variable levels -> Results Dataframe
#'
#' The results dataframe has three columns: "stat", "pValue", "FDR"
#'
#' @param object VISION object
#' @return nested list of list of data.frame (see details)
#' @export
#' @aliases getMetaDifferential
#' @rdname getMetaDifferential
setMethod("getMetaDifferential", signature(object = "Vision"),
function(object) {
# This is almost what we want to output, but needs some massaging
ClusterComparisons <- object@ClusterComparisons
if (length(ClusterComparisons) == 0){
return(ClusterComparisons)
}
return(ClusterComparisons$Meta)
})
# Some Printing methods
format.Vision <- function(vis) {
nGenes <- nrow(vis@exprData)
nCells <- ncol(vis@exprData)
msg <- sprintf("<A 'Vision' object with %i Genes and %i Cells>", nGenes, nCells)
return(msg)
}
print.Vision <- function(vis) {
print(format(vis))
}
setMethod("show", "Vision",
function(object) print(object)
)
setMethod("hasProteinData", "Vision",
function(object) {
return(!all(dim(object@proteinData) == 1))
}
)
setMethod("hasTrajectory", "Vision",
function(object) {
return(!is.null(object@LatentTrajectory))
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.