R/forestPlot.R

Defines functions forestPlot

Documented in forestPlot

#' Draw forest plot for differences betweeen cohorts.
#'
#' @details Plots results from \code{link{mafCompare}} as a forest plot with x-axis as log10 converted odds ratio and differentially mutated genes on y-axis.
#' @param mafCompareRes results from \code{\link{mafCompare}}
#' @param pVal p-value threshold. Default 0.05.
#' @param fdr fdr threshold. Default NULL. If provided uses adjusted pvalues (fdr).
#' @param geneFontSize Font size for gene symbols. Default 0.8
#' @param titleSize font size for titles. Default 1.2
#' @param lineWidth line width for CI bars. Default 1
#' @param color vector of two colors for the lines. Default 'maroon' and 'royalblue'
#' @export
#' @return Nothing
#' @seealso \code{\link{mafCompare}}
#' @examples
#' ##Primary and Relapse APL
#' primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
#' relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
#' ##Read mafs
#' primary.apl <- read.maf(maf = primary.apl)
#' relapse.apl <- read.maf(maf = relapse.apl)
#' ##Perform analysis and draw forest plot.
#' pt.vs.rt <- mafCompare(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary',
#' m2Name = 'Relapse', minMut = 5)
#' forestPlot(mafCompareRes = pt.vs.rt)

forestPlot = function(mafCompareRes, pVal = 0.05, fdr = NULL,
                      color=c('maroon','royalblue'),
                      geneFontSize = 0.8, titleSize = 1.2, lineWidth = 1){

  if(is.null(fdr)){
    m.sigs = mafCompareRes$results[pval < pVal]
  }else{
    m.sigs = mafCompareRes$results[adjPval < fdr]
  }

  m1Name = mafCompareRes$SampleSummary[1, Cohort]
  m2Name = mafCompareRes$SampleSummary[2, Cohort]

  m1.sampleSize = mafCompareRes$SampleSummary[1, SampleSize]
  m2.sampleSize = mafCompareRes$SampleSummary[2, SampleSize]

  # newly added, deal with parameter color -> vc_col for usage
  if (length(color)==1){
    vc_col = c(color,color)
  }else if(length(color==2)){
    vc_col = color
  }else{
    stop('colors length must be less equal than 2')
  }

  if (is.null(names(vc_col))){
      names(vc_col)=c(m2Name,m1Name)
  }else if (!(m1Name %in% names(vc_col)) && !(m2Name %in% names(vc_col))){
          stop(paste0('\ninput named vector [color] must contain both group name, \nwhich should be like c(',
                m1Name,', ', m2Name,') but now are ',list(names(vc_col)),'\n'))
  }else if ( !(m1Name %in% names(vc_col)) || !(m2Name %in% names(vc_col)) ){

      stop(paste0('\nif you pass [color] with named vector, then both of the names matching group names must be Explicitly declared,\n',
                  'which should be like c(',
                m1Name,', ', m2Name,') but now are ',list(names(vc_col)),'\n'))
  }
  # end of newly added

  if(nrow(m.sigs) < 1){
    stop('No differetially mutated genes found !')
  }

  m.sigs$Hugo_Symbol = factor(x = m.sigs$Hugo_Symbol, levels = rev(m.sigs$Hugo_Symbol))

  m.sigs$or_new = ifelse(test = m.sigs$or > 3, yes = 3, no = m.sigs$or)
  m.sigs$upper = ifelse(test = m.sigs$ci.up > 3, yes = 3, no = m.sigs$ci.up)
  m.sigs$lower = ifelse(test = m.sigs$ci.low > 3, yes = 3, no = m.sigs$ci.low)
  #Reverse by significance
  m.sigs$pos = rev(1:nrow(m.sigs))
  m.sigs = m.sigs[order(pos)]
  m.sigs$pos = 1:nrow(m.sigs)
  xlims = c(0, 4)
  ylims = c(0.75, nrow(m.sigs))

  graphics::layout(mat = matrix(c(1, 2, 3, 4, 5, 6, 6, 6, 6, 6), byrow = TRUE, ncol = 5, nrow = 2), widths = c(4, 1, 1), heights = c(6, 1.2))
  par(mar = c(3, 1, 3, 5))
  plot(NA, xlim = xlims, ylim = ylims, axes= FALSE, xlab = NA, ylab = NA)

  apply(m.sigs[,.(or, ci.up, ci.low, ci.up, or_new, upper, lower, pos)], 1, function(x){
    p = x[5]; u = x[6]; u_orig = x[2]; l = x[7]; l_orig = x[3]; ypos = x[8]
    if (p<1){
        linecolor = vc_col[m2Name]
    }else if(p>1){
        linecolor = vc_col[m1Name]
    }else{
        linecolor = 'black'
    }
    points(x = p, y = ypos, pch = 16, cex = 1.1*(lineWidth))
    segments(x0 = l, y0 = ypos, x1 = u, y1 = ypos, lwd = lineWidth,col = linecolor)

    if(u_orig >3){
      segments(x0 = 3, y0 = ypos, x1 = 3.25, y1 = ypos, lwd = lineWidth,col=linecolor)
      points(x = 3.25, y = ypos, pch = ">", cex = 1.1*(lineWidth))
    }
    if(l_orig >3){
      segments(x0 = 3, y0 = ypos, x1 = 3.25, y1 = ypos, lwd = lineWidth,col=linecolor)
      points(x = 3.25, y = ypos, pch = ">", cex = 1.1*(lineWidth))
    }

  })

  abline(v = 1, lty = 2, col = "gray", xpd = FALSE)
  axis(side = 1, at = 0:3, labels = c(0:3), font = 1, pos = 0.5, cex.axis = 1.3)

  mtext(text = m.sigs$Hugo_Symbol, side = 4, line = 0.2, at = 1:nrow(m.sigs),
        font = 3, las= 2, cex = geneFontSize, adj = 0)
  mtitle = paste(m2Name, ' (n = ', m2.sampleSize, ')', ' v/s ' , m1Name, ' (n = ' ,m1.sampleSize, ')', sep='')
  title(main = mtitle, font = 1, adj = 0, cex.main = titleSize)
  #mtext(text = "Odds ratio", side = 1, line = 3, font = 1, cex = 0.7*(titleSize), adj = 0.25)

  # plot annotation columns of the graph c(group1,group2,OR,p-value) col (col 2 ~ col 5)
  # annotation columns group2
  par(mar = c(3, 0, 3, 0))
  plot(rep(0, nrow(m.sigs)), 1:nrow(m.sigs), xlim = c(0, 1), axes = FALSE,
       pch = NA, xlab = "", ylab = "", ylim = ylims)
  text(x = 0.5, y = 1:nrow(m.sigs), labels = as.numeric(unlist(m.sigs[,3])),
       adj = 0, font = 1, cex = 1.4*(geneFontSize))
  title(main = m2Name, cex.main = titleSize)
  # annotation columns group1
  par(mar = c(3, 0, 3, 0))
  plot(rep(0, nrow(m.sigs)), 1:nrow(m.sigs), xlim = c(0, 1), axes = FALSE,
       pch = NA, xlab = "", ylab = "", ylim = ylims)
  text(x = 0.5, y = 1:nrow(m.sigs), labels = as.numeric(unlist(m.sigs[,2])),
       adj = 0, font = 1, cex = 1.4*(geneFontSize))
  title(main = m1Name, cex.main = titleSize)
  # annotation columns OR
  par(mar = c(3, 0, 3, 0))
  plot(rep(0, nrow(m.sigs)), 1:nrow(m.sigs), xlim = c(0, 1), axes = FALSE,
       pch = NA, xlab = "", ylab = "", ylim = ylims)
  text(x = 0.5, y = 1:nrow(m.sigs), labels = round(m.sigs$or, digits = 3),
       adj = 0.5, font = 1, cex = 1.4*(geneFontSize))
  title(main = "OR", cex.main = titleSize)

  m.sigs$significance = ifelse(test =  as.numeric(m.sigs$pval) < 0.001, yes = "***", no =
                                 ifelse(test = as.numeric(m.sigs$pval) < 0.01, yes = "**", no =
                                          ifelse(test = as.numeric(m.sigs$pval) < 0.05, yes = "*", no = "NS")))
  # annotation columns P-value
  par(mar = c(3, 0, 3, 0))
  plot(rep(0, nrow(m.sigs)), 1:nrow(m.sigs), xlim = c(0, 1), axes = FALSE,
       pch = NA, xlab = "", ylab = "", ylim = ylims)
  text(x = 0.5, y = 1:nrow(m.sigs), labels = m.sigs$significance,
       adj = 0, font = 1, cex = 1.4*(geneFontSize))
  title(main = "P-value", cex.main = titleSize)

  par(mar = c(0, 0, 0, 0))
  plot(NA, xlim = c(0,1), ylim = c(0, 1), axes = FALSE, xlab = NA, ylab = NA)

  text(x = 0, labels = paste0(
    "Odds ratio with 95% CI\n(1 = no effect, < 1 ",
    m2Name,
    " has more mutants)"
  ), y = 0.6, adj = 0, xpd = TRUE, cex = 1.2)

}
PoisonAlien/maftools documentation built on Nov. 10, 2024, 6:01 p.m.