#' Draw two barplots side by side for cohort comparision.
#' @details Draws two barplots side by side to display difference between two cohorts.
#' @param m1 first \code{\link{MAF}} object
#' @param m2 second \code{\link{MAF}} object
#' @param genes genes to be drawn. Default takes top 5 mutated genes.
#' @param orderBy Order genes by mutation rate in `m1` or `m2`. Default `NULL`, keeps the same order of `genes`
#' @param m1Name optional name for first cohort
#' @param m2Name optional name for second cohort
#' @param colors named vector of colors for each Variant_Classification.
#' @param normalize Default TRUE.
#' @param yLims Default NULL. Auto estimates. Maximum values for `m1` and `m2` respectively
#' @param borderCol Default gray
#' @param titleSize Default 1
#' @param geneSize Default 0.8
#' @param showPct Default TRUE
#' @param pctSize Default 0.7
#' @param axisSize Default 0.8
#' @param showLegend Default TRUE.
#' @param legendTxtSize Default 0.8
#' @param geneMar Default 4
#' @export
#' @examples
#' #' ##Primary and Relapse APL
#' primary.apl <- system.file("extdata", "APL_primary.maf.gz", package = "maftools")
#' relapse.apl <- system.file("extdata", "APL_relapse.maf.gz", package = "maftools")
#' ##Read mafs
#' primary.apl <- read.maf(maf = primary.apl)
#' relapse.apl <- read.maf(maf = relapse.apl)
#' ##Plot
#' coBarplot(m1 = primary.apl, m2 = relapse.apl, m1Name = 'Primary APL', m2Name = 'Relapse APL')
#' dev.off()
#' @return Returns nothing. Just draws plot.
#'
coBarplot = function(m1, m2, genes = NULL, orderBy = NULL,
m1Name = NULL, m2Name = NULL, colors = NULL,
normalize = TRUE, yLims = NULL, borderCol = "gray",
titleSize = 1, geneSize = 0.8,
showPct = TRUE, pctSize = 0.7, axisSize = 0.8,
showLegend = TRUE, legendTxtSize = 1, geneMar = 4){
if(is.null(genes)){
m1.genes = getGeneSummary(m1)[1:5, Hugo_Symbol]
m2.genes = getGeneSummary(m2)[1:5, Hugo_Symbol]
genes = rev(unique(c(m1.genes, m2.genes)))
}
if(is.null(colors)){
colors = get_vcColors()
}
m1.gs = get_col_df(m = m1, g = genes)
m1.ss = as.numeric(m1@summary[ID %in% "Samples", summary])
gs1.load = getGeneSummary(x = m1)[Hugo_Symbol %in% genes,.(Hugo_Symbol, AlteredSamples)]
gs1.load[,AlteredSamples := round(AlteredSamples/m1.ss, digits = 2) * 100]
data.table::setDF(x = gs1.load, rownames = gs1.load$Hugo_Symbol)
gs1.load = gs1.load[, "AlteredSamples", drop = FALSE]
m1.missing = genes[!genes %in% rownames(gs1.load)]
if(length(m1.missing) > 0){
gs1.load = rbind(gs1.load, data.frame(row.names = m1.missing, AlteredSamples = rep(0, length(m1.missing)), stringsAsFactors = FALSE))
}
m2.gs = get_col_df(m = m2, g = genes)
if (ncol(m1.gs) == 0L & ncol(m2.gs) == 0L) {
stop("Cannot plot genes without mutation!")
} else if (ncol(m1.gs) == 0L) {
m1.gs <- m2.gs
m1.gs[] <- 0
} else if (ncol(m2.gs) == 0L) {
m2.gs <- m1.gs
m2.gs[] <- 0
}
m2.ss = as.numeric(m2@summary[ID %in% "Samples", summary])
gs2.load = getGeneSummary(x = m2)[Hugo_Symbol %in% genes,.(Hugo_Symbol, AlteredSamples)]
gs2.load[,AlteredSamples := round(AlteredSamples/m2.ss, digits = 2) * 100]
data.table::setDF(x = gs2.load, rownames = gs2.load$Hugo_Symbol)
gs2.load = gs2.load[, "AlteredSamples", drop = FALSE]
m2.missing = genes[!genes %in% rownames(gs2.load)]
if(length(m2.missing) > 0){
gs2.load = rbind(gs2.load, data.frame(row.names = m2.missing, AlteredSamples = rep(0, length(m2.missing)), stringsAsFactors = FALSE))
}
if(!is.null(orderBy)){
orderBy = match.arg(arg = orderBy, choices = c("m1", "m2"), several.ok = FALSE)
if(orderBy == "m1"){
genes = rev(rownames(gs1.load[order(gs1.load$AlteredSamples, decreasing = TRUE),, drop = FALSE]))
}else if(orderBy == "m2"){
genes = rev(rownames(gs2.load[order(gs2.load$AlteredSamples, decreasing = TRUE),, drop = FALSE]))
}
}
m1.gs = t(m1.gs[genes,,drop = FALSE])
gs1.load = gs1.load[genes, , drop = FALSE]
m2.gs = t(m2.gs[genes,,drop = FALSE])
gs2.load = gs2.load[genes, , drop = FALSE]
if(normalize){
m1.gs = (m1.gs/m1.ss)*100
m2.gs = (m2.gs/m2.ss)*100
if(!is.null(yLims)){
xat = pretty(c(-yLims[1], 0, yLims[2]))
}else{
xat = seq(-100, 100, 20)
}
}else{
if(!is.null(yLims)){
xat = pretty(c(-yLims[1], 0, yLims[2]))
}else{
m1max = max(apply(m1.gs, 2, function(x) cumsum(x)))
m2max = max(apply(m2.gs, 2, function(x) cumsum(x)))
m12max = max(m1max, m2max)
xat = pretty(c(-m12max, 0, m12max))
}
}
lo = matrix(data = c(1, 1, 2, 2), nrow = 2, byrow = TRUE)
if (showLegend) graphics::layout(mat = lo, heights = c(4, 1.25))
else graphics::layout(mat = lo, heights = c(20, 1.25))
par(mar = c(2, geneMar, 1, 2))
b1 = barplot(
height = -m1.gs,
horiz = TRUE,
las = TRUE,
col = colors[rownames(m1.gs)],
xlim = range(xat),
axes = FALSE, names.arg = rep(NA, ncol(m1.gs)), border = borderCol
)
if(showPct){
text(x = -colSums(m1.gs), y = b1, labels = paste0(gs1.load$AlteredSamples, "%"), adj = 1.1, cex = pctSize, xpd = TRUE)
}
barplot(
height = m2.gs,
horiz = TRUE,
las = TRUE,
col = colors[rownames(m2.gs)],
add = TRUE,
axes = FALSE, names.arg = rep(NA, ncol(m2.gs)), border = borderCol
)
if(showPct){
text(x = colSums(m2.gs), y = b1, labels = paste0(gs2.load$AlteredSamples, "%"), adj = -0.1, cex = pctSize, xpd = TRUE)
}
if(normalize){
axis(side = 1, at = xat, labels = paste0(abs(xat), "%"), cex.axis = axisSize)
}else{
axis(side = 1, at = xat, labels = abs(xat), cex.axis = axisSize)
}
mtext(text = colnames(m1.gs), side = 2, font = 3, las = 2, at = b1, line = 0.75, cex = geneSize)
if(normalize){
mtext(text = "Percent of cases", side = 1, line = 2)
}else{
mtext(text = "Number of cases", side = 1, line = 2)
}
title(main = paste0(m1Name, ' [N=', m1.ss, ']'), cex.main = titleSize, outer = FALSE, font = 2, adj = 0)
title(main = paste0(m2Name, ' [N=', m2.ss, ']'), cex.main = titleSize, outer = FALSE, font = 2, adj = 1)
par(mar = c(0, 0.5, 1, 0), xpd = TRUE)
plot(NULL,ylab='',xlab='', xlim=0:1, ylim=0:1, axes = FALSE)
vcs = unique(c(rownames(m1.gs), rownames(m2.gs)))
col = colors[vcs]
if (showLegend) {
legend("topleft", legend = names(col), col = col, bty = "n", border=NA,
xpd = TRUE, text.font = 1, pch = 15, xjust = 0, yjust = 0,
cex = legendTxtSize, y.intersp = 1.5, x.intersp = 1,
pt.cex = 1.2 * legendTxtSize, ncol = ceiling(length(col)/4))
}
invisible(list(m1 = m1.gs, m2 = m2.gs))
}
get_col_df = function(m, g){
if(nrow(getGeneSummary(x = m)[Hugo_Symbol %in% g]) == 0){
return(data.frame(row.names = g, stringsAsFactors = FALSE))
}
ml = apply(createOncoMatrix(
m = m, g = g, chatty = FALSE, add_missing = TRUE)[['oncoMatrix']],
1, table, simplify = FALSE)
ml = lapply(ml, function(x){
data.frame(x)
})
ml = data.table::rbindlist(l = ml, use.names = TRUE, fill = TRUE, idcol = "Gene")
ml = ml[!Var1 %in% ""]
#CNV+Mutated = Complex_Event
ml$Var1 = ifelse(test = ml$Var1 %like% ";", yes = "Complex_Event", no = as.character(ml$Var1))
ml = ml[,sum(Freq), .(Gene, Var1)]
colnames(ml) = c("Gene", "Var1", "Freq")
ml$Gene = factor(x = ml$Gene, levels = g, ordered = TRUE)
ml$Var1 = as.character(ml$Var1)
mdf = data.table::dcast(data = ml, Gene ~ Var1, value.var = "Freq", fill = 0, drop = FALSE)
data.table::setDF(x = mdf, rownames = as.character(mdf$Gene))
mdf$Gene = NULL
mdf
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.