#' Gene ontology testing for Ilumina methylation array data
#'
#' Tests gene ontology enrichment for significant CpGs from Illumina's Infinium
#' HumanMethylation450 or MethylationEPIC array, taking into account two
#' different sources of bias: 1) the differing number of probes per gene
#' present on the array, and 2) CpGs that are annotated to multiple genes.
#'
#' This function takes a character vector of significant CpG sites, maps the
#' CpG sites to Entrez Gene IDs, and tests for GO term or KEGG pathway
#' enrichment using a Wallenius' non central hypergeometric test, taking into
#' account the number of CpG sites per gene on the 450K/EPIC array and
#' multi-gene annotated CpGs. Geeleher et al. (2013) showed
#' that a severe bias exists when performing gene set analysis for genome-wide
#' methylation data that occurs due to the differing numbers of CpG sites
#' profiled for each gene. \code{gometh} is based on the \code{goseq} method
#' (Young et al., 2010), and is a modification of the \code{goana} function in
#' the \code{limma} package. If \code{prior.prob} is set to
#' FALSE, then prior probabilities are not used and it is assumed that each
#' gene is equally likely to have a significant CpG site associated with it.
#'
#' The testing now also takes into account that some CpGs are annotated to
#' multiple genes. For a small number of gene families, this previously caused
#' their associated GO categories/gene sets to be erroneously overrepresented
#' and thus highly significant. If \code{fract.counts=FALSE} then CpGs are
#' allowed to map to multiple genes (this is NOT recommended).
#'
#' A new feature of \code{gometh} and \code{gsameth} is the ability to restrict
#' the input CpGs by genomic feature with the argument \code{genomic.features}.
#' The possible options include "ALL", "TSS200", "TSS1500", "Body", "1stExon",
#' "3'UTR", "5'UTR" and "ExonBnd", and the user may specify any combination.
#' Please not that "ExonBnd" is not an annotated feature on 450K arrays. For
#' example if you are interested in the promoter region only, you could specify
#' \code{genomic.features = c("TSS1500","TSS200","1stExon")}. The default
#' behaviour is to test all input CpGs \code{sig.cpg} even if the user specifies
#' "ALL" and one or more other features.
#'
#' Genes associated with each CpG site are obtained from the annotation package
#' \code{IlluminaHumanMethylation450kanno.ilmn12.hg19} if the array type is
#' "450K". For the EPIC array, the annotation package
#' \code{IlluminaHumanMethylationEPICanno.ilm10b4.hg19} is used. To use a
#' different annotation package, please supply it using the \code{anno}
#' argument.
#'
#' If you are interested in which genes overlap with the genes in the gene set,
#' setting \code{sig.genes} to TRUE will output an additional column in the
#' results data frame that contains all the significant differentially
#' methylated gene symbols, comma separated. The default is FALSE.
#'
#' In order to get a list which contains the mapped Entrez gene IDs,
#' please use the \code{getMappedEntrezIDs} function. \code{gometh} tests all
#' GO or KEGG terms, and false discovery rates are calculated using the method
#' of Benjamini and Hochberg (1995). The \code{topGSA} function can be used to
#' display the top 20 most enriched pathways.
#'
#' For more generalised gene set testing where the user can specify the gene
#' set/s of interest to be tested, please use the \code{gsameth} function.
#' If you are interested in performing gene set testing following a region
#' analysis, then the functions \code{goregion} and \code{gsaregion} can be
#' used.
#'
#' @param sig.cpg Character vector of significant CpG sites to test for GO term
#' enrichment.
#' @param all.cpg Character vector of all CpG sites tested. Defaults to all CpG
#' sites on the array.
#' @param collection The collection of pathways to test. Options are "GO" and
#' "KEGG". Defaults to "GO".
#' @param array.type The Illumina methylation array used. Options are "450K" or
#' "EPIC". Defaults to "450K".
#' @param plot.bias Logical, if true a plot showing the bias due to the
#' differing numbers of probes per gene will be displayed.
#' @param prior.prob Logical, if true will take into account the probability of
#' significant differential methylation due to numbers of probes per gene. If
#' false, a hypergeometric test is performed ignoring any bias in the data.
#' @param anno Optional. A \code{DataFrame} object containing the complete
#' array annotation as generated by the \code{\link{minfi}}
#' \code{\link{getAnnotation}} function. Speeds up execution, if provided.
#' @param equiv.cpg Logical, if true then equivalent numbers of cpgs are used
#' for odds calculation rather than total number cpgs. Only used if
#' \code{prior.prob=TRUE}.
#' @param fract.counts Logical, if true then fractional counting of Cpgs is used
#' to account for CpGs that are annotated to multiple genes. Only used if
#' \code{prior.prob=TRUE}.
#' @param genomic.features Character vector or scalar indicating whether the
#' gene set enrichment analysis should be restricted to CpGs from specific
#' genomic locations. Options are "ALL", "TSS200","TSS1500","Body","1stExon",
#' "3'UTR","5'UTR","ExonBnd"; and the user can select any combination. Defaults
#' to "ALL".
#' @param sig.genes Logical, if true then the significant differentially
#' methylated genes that overlap with the gene set of interest is outputted
#' as the final column in the results table. Default is FALSE.
#'
#' @return A data frame with a row for each GO or KEGG term and the following
#' columns: \item{Term}{ GO term if testing GO pathways } \item{Ont}{ ontology
#' that the GO term belongs to if testing GO pathways. "BP" - biological
#' process, "CC" - cellular component, "MF" - molecular function. }
#' \item{Pathway}{ the KEGG pathway being tested if testing KEGG terms. }
#' \item{N}{ number of genes in the GO or KEGG term } \item{DE}{ number of
#' genes that are differentially methylated } \item{P.DE}{ p-value for
#' over-representation of the GO or KEGG term term } \item{FDR}{ False
#' discovery rate } \item{SigGenesInSet}{ Significant differentially methylated
#' genes overlapping with the gene set of interest. }
#'
#' @author Belinda Phipson
#' @seealso \code{\link{gsameth},\link{goregion},\link{gsaregion},
#' \link{getMappedEntrezIDs}}
#'
#' @references Phipson, B., Maksimovic, J., and Oshlack, A. (2016). missMethyl:
#' an R package for analysing methylation data from Illuminas
#' HumanMethylation450 platform. \emph{Bioinformatics}, \bold{15};32(2),
#' 286--8.
#'
#' Geeleher, P., Hartnett, L., Egan, L. J., Golden, A., Ali, R. A. R.,
#' and Seoighe, C. (2013). Gene-set analysis is severely biased when applied to
#' genome-wide methylation data. \emph{Bioinformatics}, \bold{29}(15),
#' 1851--1857.
#'
#' Young, M. D., Wakefield, M. J., Smyth, G. K., and Oshlack, A.
#' (2010). Gene ontology analysis for RNA-seq: accounting for selection bias.
#' \emph{Genome Biology}, 11, R14.
#'
#' Ritchie, M. E., Phipson, B., Wu, D., Hu, Y.,
#' Law, C. W., Shi, W., and Smyth, G. K. (2015). limma powers differential
#' expression analyses for RNA-sequencing and microarray studies. \emph{Nucleic
#' Acids Research}, gkv007.
#'
#' Benjamini, Y., and Hochberg, Y. (1995). Controlling
#' the false discovery rate: a practical and powerful approach to multiple
#' testing. \emph{Journal of the Royal Statistical Society Series}, B,
#' \bold{57}, 289-300.
#'
#' @examples
#'
#' \dontrun{ # to avoid timeout on Bioconductor build
#' library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
#' library(limma)
#' ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
#' # Randomly select 1000 CpGs to be significantly differentially methylated
#' sigcpgs <- sample(rownames(ann),1000,replace=FALSE)
#' # All CpG sites tested
#' allcpgs <- rownames(ann)
#'
#' # GO testing with prior probabilities taken into account
#' # Plot of bias due to differing numbers of CpG sites per gene
#' gst <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
#' plot.bias = TRUE, prior.prob = TRUE, anno = ann)
#' # Total number of GO categories significant at 5% FDR
#' table(gst$FDR<0.05)
#' # Table of top GO results
#' topGSA(gst)
#'
#' # GO testing ignoring bias
#' gst.bias <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
#' prior.prob=FALSE, anno = ann)
#' # Total number of GO categories significant at 5% FDR ignoring bias
#' table(gst.bias$FDR<0.05)
#' # Table of top GO results ignoring bias
#' topGSA(gst.bias)
#'
#' # GO testing ignoring multi-mapping CpGs
#' gst.multi <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
#' plot.bias = TRUE, prior.prob = TRUE, fract.counts = FALSE,
#' anno = ann)
#' topGSA(gst.multi, n=10)
#'
#' # Restrict to CpGs in promoter regions
#' gst.promoter <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,
#' collection = "GO", anno = ann,
#' genomic.features=c("TSS200","TSS1500","1stExon"))
#' topGSA(gst.promoter)
#'
#' # KEGG testing
#' kegg <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "KEGG",
#' prior.prob=TRUE, anno = ann)
#' # Table of top KEGG results
#' topGSA(kegg)
#'
#' # Add significant genes to KEGG output
#' kegg.siggenes <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,
#' collection = "KEGG", anno = ann, sig.genes = TRUE)
#' # Output top 5 KEGG pathways
#' topGSA(kegg.siggenes, n=5)
#' }
#'
#' @import org.Hs.eg.db statmod stringr
#' @importFrom methods is
#' @export gometh
gometh <- function(sig.cpg, all.cpg=NULL, collection=c("GO","KEGG"),
array.type = c("450K","EPIC"), plot.bias=FALSE,
prior.prob=TRUE, anno=NULL, equiv.cpg = TRUE,
fract.counts = TRUE,
genomic.features = c("ALL", "TSS200","TSS1500","Body",
"1stExon","3'UTR","5'UTR","ExonBnd"),
sig.genes = FALSE)
# Gene ontology testing or KEGG pathway analysis for Illumina methylation
# arrays based on goseq
# Takes into account probability of differential methylation based on
# numbers of probes on array per gene
# Belinda Phipson
# 28 January 2015. Last updated 1 September 2020.
# EPIC functionality contributed by Andrew Y.F. Li Yim
{
array.type <- match.arg(toupper(array.type), c("450K","EPIC"))
collection <- match.arg(toupper(collection), c("GO","KEGG"))
genomic.features <- match.arg(genomic.features, c("ALL", "TSS200","TSS1500",
"Body", "1stExon","3'UTR",
"5'UTR","ExonBnd"),
several.ok = TRUE)
if(length(genomic.features) > 1 & any(grepl("ALL", genomic.features))){
message("All input CpGs are used for testing.")
genomic.features <- "ALL"
}
if(array.type == "450K" & any(grepl("ExonBnd", genomic.features))){
stop("'ExonBnd' is not an annotated feature on 450K arrays,\n
please remove it from your genomic.feature parameter\n
specification.")
}
if(collection == "GO"){
go <- .getGO()
result <- gsameth(sig.cpg=sig.cpg, all.cpg=all.cpg, collection=go$idList,
array.type=array.type, plot.bias=plot.bias,
prior.prob=prior.prob, anno=anno, equiv.cpg=equiv.cpg,
fract.counts=fract.counts,
genomic.features = genomic.features,
sig.genes = sig.genes)
result <- merge(go$idTable,result,by.x="GOID",by.y="row.names")
rownames(result) <- result$GOID
} else if(collection == "KEGG"){
kegg <- .getKEGG()
result <- gsameth(sig.cpg=sig.cpg, all.cpg=all.cpg, collection=kegg$idList,
array.type=array.type, plot.bias=plot.bias,
prior.prob=prior.prob, anno=anno, equiv.cpg=equiv.cpg,
fract.counts=fract.counts,
genomic.features = genomic.features,
sig.genes = sig.genes)
result <- merge(kegg$idTable,result,by.x="PathwayID",by.y="row.names")
rownames(result) <- result$PathwayID
}
result[,-1]
}
.getGO <- function(){
if(!requireNamespace("org.Hs.eg.db", quietly = TRUE))
stop("org.Hs.eg.db package required but not installed.")
egGO2ALLEGS <- utils::getFromNamespace("org.Hs.egGO2ALLEGS", "org.Hs.eg.db")
GeneID.PathID <- AnnotationDbi::toTable(egGO2ALLEGS)[,c("gene_id", "go_id", "Ontology")]
d <- !duplicated(GeneID.PathID[, c("gene_id", "go_id")])
GeneID.PathID <- GeneID.PathID[d, ]
GOID.TERM <- suppressMessages(AnnotationDbi::select(GO.db::GO.db,
keys=unique(GeneID.PathID$go_id),
columns=c("GOID","ONTOLOGY","TERM"),
keytype="GOID"))
go <- tapply(GeneID.PathID$gene_id, GeneID.PathID$go_id, list)
list(idList=go, idTable=GOID.TERM)
}
.getKEGG <- function(){
GeneID.PathID <- limma::getGeneKEGGLinks(species.KEGG = "hsa", convert = TRUE)
GeneID.PathID$PathwayID <- gsub("path:", "", GeneID.PathID$PathwayID)
isna <- rowSums(is.na(GeneID.PathID[, 1:2])) > 0.5
GeneID.PathID <- GeneID.PathID[!isna, ]
ID.ID <- paste(GeneID.PathID[, 1], GeneID.PathID[, 2], sep = ".")
d <- !duplicated(ID.ID)
GeneID.PathID <- GeneID.PathID[d, ]
PathID.PathName <- limma::getKEGGPathwayNames(species.KEGG = "hsa",
remove.qualifier = TRUE)
#PathID.PathName$PathwayID <- paste0("path:", PathID.PathName$PathwayID)
GeneID.PathID <- merge(GeneID.PathID, PathID.PathName, by="PathwayID")
kegg <- tapply(GeneID.PathID$GeneID, GeneID.PathID$PathwayID, list)
list(idList = kegg, idTable = PathID.PathName)
}
.plotBias <- function(D,bias)
# Plotting function to show gene level CpG density bias
# Belinda Phipson
# 5 March 2015
{
o <- order(bias)
splitf <- rep(1:100,each=200)[1:length(bias)]
avgbias <- tapply(bias[o],factor(splitf),mean)
sumDM <- tapply(D[o],factor(splitf),sum)
propDM <- sumDM/table(splitf)
graphics::par(mar=c(5,5,2,2))
graphics::plot(avgbias,as.vector(propDM),
xlab="Number of CpGs per gene (binned)",
ylab="Proportion Differential Methylation",cex.lab=1.5,
cex.axis=1.2)
graphics::lines(stats::lowess(avgbias,propDM),col=4,lwd=2)
}
.estimatePWF <- function(D,bias)
# An alternative to goseq function nullp, which is transformation invariant
# Belinda Phipson and Gordon Smyth
# 6 March 2015
{
prior.prob <- bias
o <- order(bias)
prior.prob[o] <- limma::tricubeMovingAverage(D[o],span=0.5)
prior.prob
}
.getFlatAnnotation <- function(array.type=c("450K","EPIC"),anno=NULL)
# flatten 450k or EPIC array annotation
# Jovana Maksimovic
# 18 September 2018
# Updated 18 September 2018
# Modified version of Belida Phipson's .flattenAnn code
{
if(is.null(anno)){
if(array.type=="450K"){
anno <- minfi::getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19::IlluminaHumanMethylation450kanno.ilmn12.hg19)
} else {
anno <- minfi::getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19::IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
}
}
# get rid of the non-CpG sites
ann.keep<-anno[grepl("^cg",anno$Name),]
# get rid of CpGs that are not annotated
missing<-ann.keep$UCSC_RefGene_Name==""
ann.keep<-ann.keep[!missing,]
# get individual gene names for each CpG
geneslist<-strsplit(ann.keep$UCSC_RefGene_Name,split=";")
names(geneslist)<-rownames(ann.keep)
grouplist<-strsplit(ann.keep$UCSC_RefGene_Group,split=";")
names(grouplist)<-rownames(ann.keep)
flat<-data.frame(symbol=unlist(geneslist),group=unlist(grouplist))
flat$symbol<-as.character(flat$symbol)
flat$group <- as.character(flat$group)
flat$cpg<- substr(rownames(flat),1,10)
#flat$cpg <- rownames(flat)
flat$alias <- suppressWarnings(limma::alias2SymbolTable(flat$symbol))
#eg <- toTable(org.Hs.egSYMBOL2EG)
eg <- suppressMessages(AnnotationDbi::select(org.Hs.eg.db,
keys=AnnotationDbi::keys(org.Hs.eg.db),
columns=c("ENTREZID","SYMBOL"),
keytype="ENTREZID"))
colnames(eg) <- c("gene_id","symbol")
m <- match(flat$alias,eg$symbol)
flat$entrezid <- eg$gene_id[m]
flat <- flat[!is.na(flat$entrezid),]
# keep unique cpg by gene name annotation
id<-paste(flat$cpg,flat$entrezid,sep=".")
d <- duplicated(id)
flat.u <- flat[!d,]
flat.u
# This randomly samples only 1 gene ID for multimapping CpGs
#.reduceMultiMap(flat.u)
}
# .reduceMultiMap <- function(flat){
# mm <- table(flat$cpg)
# mm <- names(mm[mm > 2])
# red <- tapply(flat$entrezid[flat$cpg %in% mm],
# flat$cpg[flat$cpg %in% mm], sample, 1)
# key <- paste(flat$cpg,flat$entrezid,sep=".")
# rkey <- paste(names(red),red,sep = ".")
# w <- which(key %in% rkey)
#
# newmm <- flat[w,]
# newflat <- flat[-which(flat$cpg %in% mm),]
# newflat <- rbind(newflat, newmm)
# newflat
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.