R/ViewTopTargets.R

Defines functions ct.topTargets

Documented in ct.topTargets

##' @title Display the log2 fold change estimates and associated standard deviations of the guides targeting the top 
##' candidates in a crispr screen
##' @description This is a function for displaying candidates from a crispr screen, using the information summarized 
##' in the corresponding \code{fit} and the output from \code{ct.generateResults()}. The fold change and standard deviation 
##' estimates for each gRNA associated with each target (extracted from the \code{coefficients} and \code{stdev.unscaled} slot 
##' of \code{fit}) are plotted on the y axis. Targets are selected on the basis of their gene-level enrichment or depletion 
##' P-values; in the case of ties, they are ranked on the basis of their corresponding Rho statistics. 
##' @param fit An object of class \code{MArrayLM} containing, at minimum, a \code{coefficents} slot with coefficients from the comparison, 
##' and a \code{stdev.unscaled} slot with the corresponding standard deviation of the coefficent estimates. The \code{row.names} attribute 
##' should ideally match that which is found in \code{annotation}.
##' @param summaryDF A data.frame summarizing the results of the screen, returned by the function \code{\link{ct.generateResults}}. 
##' @param annotation An annotation object for the experiment. gRNAs are annotated by 
##' row, and must minimally contain a column \code{geneSymbol}. 
##' @param targets Either the number of top targets to display, or a list of \code{geneSymbol}s contained in the \code{geneSymbol} 
##' slot of the \code{annotation} object. 
##' @param enrich Logical indicating whether to display guides that are enriched (default) or depleted within the screen. If a vector of 
##' \code{geneSymbol}s is specified, this controls the left-t0-right ordering of the corresponding gRNAs. 
##' @param contrast.term If a fit object with multiple coefficients is passed in, a string indiating the coefficient of interest.   
##' @return An image on the default device indicating each gRNA's log2 fold change and the unscaled standard deviation of the effect estimate, 
##' derived from the \code{MArrayLM} object.
##' @author Russell Bainer
##' @examples 
##' data('fit')
##' data('resultsDF')
##' data('ann')
##' 
##' ct.topTargets(fit, resultsDF, ann) 
##' @export

ct.topTargets <- function(fit, summaryDF, annotation, targets = 10, enrich = TRUE, contrast.term = NULL) {
    current.graphic.params <- par(no.readonly = TRUE)
    on.exit(suppressWarnings(par(current.graphic.params)))

    if (ncol(fit$coefficients) > 1) {
        if (is.null(contrast.term)) {
            stop("The fit object contains multiple coefficients. Please specify a contrast.term.")
        }
        fit <- ct.preprocessFit(fit, contrast.term)
    }


    # Test input: testing
    if (!methods::is(fit, "MArrayLM")) {
        stop(deparse(substitute(eset)), " is not an MArrayLM.")
    }

    if (!setequal(row.names(annotation), row.names(fit))) {
        warning("row.names of the fit object and the annotation file are not identical. Using the intersection only.")
        grnas <- intersect(row.names(fit), row.names(annotation))
        fit <- fit[grnas, ]
        annotation <- annotation[grnas, ]
    }

    if (!(enrich %in% c(TRUE, FALSE))) {
        stop("enrich must be either TRUE or FALSE.")
    }

    if (!ct.resultCheck(summaryDF)) {
        stop("Execution halted.")
    }


    # Identify the top targets from the summary DF; order and group gRNAs within a target, then rank targets
    summaryDF$geneSymbol <- as.character(summaryDF$geneSymbol)
    summaryDF <- summaryDF[with(summaryDF, order(summaryDF[, "Target-level Enrichment P"], summaryDF[, "Rho_enrich"], summaryDF[, "geneSymbol"], -summaryDF[, "gRNA Log2 Fold Change"])), 
        ]
    plottitle <- "Enriched Targets"

    if (enrich == FALSE) {
        summaryDF <- summaryDF[with(summaryDF, order(summaryDF[, "Target-level Depletion P"], summaryDF[, "Rho_deplete"], summaryDF[, "geneSymbol"], summaryDF[, "gRNA Log2 Fold Change"])), 
            ]
        plottitle <- "Depleted Targets"
    }

    if (is.character(targets)) {
        toptargets <- intersect(targets, annotation$geneSymbol)
        ntargets <- length(toptargets)
        plottitle <- ""
    } else {
        if ((length(targets) != 1) | !is.numeric(targets)) {
            stop("\"targets\" must be specified as a single number or a vector of elements in the geneSymbol column of the annotation object.")
        }
        ntargets <- targets
        plottitle <- paste("Top", ntargets, plottitle)
        toptargets <- unique(summaryDF$geneSymbol)[seq_len(ntargets)]
    }
    if (ntargets <= 0) {
        stop("No valid targets were specified.")
    }

    targetrows <- row.names(summaryDF)[(summaryDF$geneSymbol %in% toptargets)]
    nguides <- unlist(lapply(toptargets, function(x) {
        sum(summaryDF$geneSymbol %in% x, na.rm = TRUE)
    }))

    lfc <- fit$coefficients[targetrows, 1]
    sdu <- fit$stdev.unscaled[targetrows, 1] + fit$coefficients[targetrows, 1]
    sdl <- fit$coefficients[targetrows, 1] - fit$stdev.unscaled[targetrows, 1]

    ylimit <- c(min(0, min(sdl)), max(0, max(sdu)))

    # Compose a vector of the x locations
    xloc <- as.vector(unlist(mapply(function(start, numguides) {
        if (numguides > 1) {
            seq(start, start + 1, length.out = numguides)
        } else {
            start + 0.5
        }
    }, start = seq(1, by = 2, length.out = ntargets), numguides = nguides, SIMPLIFY = TRUE)))

    sddf <- cbind(xloc, sdu, sdl)

    # make the plot
    plot(xloc, lfc, xaxt = "n", main = plottitle, ylim = ylimit, xlab = "", ylab = "Log2 gRNA Abundance Change", pch = 18, col = "darkred")
    suppress <- apply(sddf, 1, function(x) {
        lines(c(x[1], x[1]), c(x[2], x[3]), col = rgb(0, 0, 0, 0.3), lwd = 4)
    })
    points(xloc, lfc, pch = 18, col = "darkred")
    suppress <- capture.output(lapply(seq(2.5, by = 2, length.out = (ntargets - 1)), function(x) {
        abline(v = x, lty = "dotted", col = "gray")
    }))
    abline(h = 0)
    # Add the labels
    axis(1, at = seq(1.5, by = 2, length.out = ntargets), labels = toptargets, las = 3)
    if (!is.null(contrast.term)) {
        mtext(contrast.term, side = 3, line = 0)
    }
}
OscarBrock/gCrisprTools documentation built on Oct. 25, 2022, 7:29 a.m.