R/GuideCDF.R

Defines functions ct.guideCDF ct.ecdf

Documented in ct.ecdf ct.guideCDF

##' @title Generate a cumulative tally of reads by guide rank
##' @description This function returns a numeric vector of the same length as the input, where each element \code{n} contains the proportion
##' the sum of the full vector that is captured by its first \code{1-n} elements (arranged in descending order).  
##' @param vector An input numeric vector to be aggregated. 
##' @return A numeric vector of the cumulative sum
##' @author Russell Bainer
##' @keywords internal
ct.ecdf <- function(vector) {
    sorted <- as.numeric(sort(vector, decreasing = TRUE))
    out <- unlist(lapply(seq_along(sorted), function(x) {
        sum(sorted[seq_len(x)])
    }))/sum(sorted)
    return(out)
}

##' @title View CDFs of the ranked gRNAs or Targets present in a crispr screen
##' @description This function generates a plot relating the cumulative proportion of reads in each sample of a crispr screen to the abundance rank of the 
##' underlying guides (or Targets). The purpose of this algorithm is to detect potential distortions in the library composition 
##' that might not be properly controlled by sample normalization (see also: \code{ct.stackedGuides()}).
##' @param eset An ExpressionSet  object containing, at minimum, a matrix of gRNA abundances extractable with the exprs() function.
##' @param sampleKey An optional sample key, supplied as an ordered factor linking the samples to experimental 
##' variables. The \code{names} attribute should exactly match those present in \code{eset}, and the control set is assumed to be 
##' the first \code{level}.
##' @param plotType A string indicating whether the individual guides should be displayed ('\code{gRNA}'), or if they should be aggregated into target-level
##' estimates ('\code{Target}') according to the \code{geneSymbol} column in the \code{annotation} object.  
##' @param annotation An optional data.frame containing an annotation object to be used to aggregate the guides into targets. gRNAs are annotated by row, 
##' and must minimally contain a column \code{geneSymbol} indicating the target elements.
##' @return A CDF plot displaying the appropriate CDF curves on the default device. 
##' @author Russell Bainer
##' @examples data('es')
##' ct.guideCDF(es)
##' @export

ct.guideCDF <- function(eset, sampleKey = NULL, plotType = "gRNA", annotation = NULL) {

    current.graphic.params <- par(no.readonly = TRUE)
    on.exit(suppressWarnings(par(current.graphic.params)))

    if (!methods::is(eset, "ExpressionSet")) {
        stop("eset must be an expressionset object.")
    }
    if (!(plotType %in% c("gRNA", "Target"))) {
        stop("Please specify \"gRNA\" or \"Target\" to be displayed.")
    }

    # Extract and preprocess data
    d <- exprs(eset)
    legendnames <- colnames(d)

    if (!is.null(sampleKey)) {
         sampleKey <- ct.keyCheck(sampleKey, eset)
         d <- d[, names(sampleKey)[order(sampleKey)]]
         legendnames <- paste(sampleKey[colnames(d)], colnames(d), sep = "_")
        } 

    if (plotType == "Target") {
        if (is.null(annotation) | !("geneSymbol" %in% names(annotation))) {
            stop("An annotation object containing a \"geneSymbol\" column must be supplied 
           to display target-level representation.")
        }

        annotation <- ct.prepareAnnotation(annotation, eset, throw.error = FALSE)

        message("Summarizing gRNA counts into targets.")

        genects <- lapply(unique(annotation$geneSymbol), function(x) {
            if (sum(annotation$geneSymbol %in% x) > 1) {
                colSums(d[row.names(annotation)[annotation$geneSymbol %in% x], ])
            } else {
                d[row.names(annotation)[annotation$geneSymbol %in% x], ]
            }
        })
        d <- data.frame(t(simplify2array(genects)))
        row.names(d) <- unique(annotation$geneSymbol)
    }

    d.rank <- apply(d, 2, ct.ecdf)

    # plot it
    colorSpace <- colorRampPalette(c("blue", "lightblue", "darkred"))(ncol(d.rank))

    plot(seq_len(nrow(d)), d.rank[, 1], pch = 20, col = colorSpace[1], xlim = c(0, nrow(d.rank)), xlab = paste(plotType, "Abundance Rank"), ylab = "Cumulative Proportion of Reads", 
        main = paste("Cumulative Proportion of Reads by", plotType, "Rank"))

    for (z in 2:ncol(d.rank)) {
        lines(seq_len(nrow(d)), d.rank[, z], pch = 20, col = colorSpace[z], new = FALSE)
    }
    legend("bottomright", legend = legendnames, fill = colorSpace, ncol = 2, cex = 0.5)
}
OscarBrock/gCrisprTools documentation built on Oct. 25, 2022, 7:29 a.m.