R/algorithm2.R

Defines functions tidy_X_and_Y algorithm2

# SpatialDecon: mixed cell deconvolution for spatial and/or bulk gene expression
# data
# Copyright (C) 2020, NanoString Technologies, Inc.
#    This program is free software: you can redistribute it and/or modify it
#    under the terms of the GNU General Public License as published by the Free
#    Software Foundation, either version 3 of the License, or (at your option)
#    any later version.
#    This program is distributed in the hope that it will be useful, but WITHOUT
#    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
#    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
#    more details.
#    You should have received a copy of the GNU General Public License along
#    with this program.  If not, see https://www.gnu.org/licenses/.
# Contact us:
# NanoString Technologies, Inc.
# 530 Fairview Avenue N
# Seattle, WA 98109
# Tel: (888) 358-6266
# pdanaher@nanostring.com



#' SpatialDecon mixed cell deconvolution algorithm
#'
#' Runs the generic SpatialDecon decon workflow, including:
#' \enumerate{
#' \item run deconvolution once
#' \item remove poorly-fit genes from first round of decon
#' \item re-run decon with cleaned-up gene set
#' \item compute p-values
#' }
#'
#' @param Y p-length expression vector or p * N expression matrix - the actual
#' (linear-scale) data
#' @param X p * K Training matrix.
#' @param bg Expected background counts. Provide a scalar to apply to all
#'  data points, or
#'  else a matrix/vector aligning with Y to provide more nuanced expected
#'   background.
#' @param weights The same as the weights argument used by lm
#' @param resid_thresh A scalar, sets a threshold on how extreme individual
#' data points' values
#'  can be (in log2 units) before getting flagged as outliers and set to NA.
#' @param lower_thresh A scalar. Before log2-scale residuals are calculated,
#' both observed and fitted
#'  values get thresholded up to this value. Prevents log2-scale residuals from
#'  becoming extreme in
#'  points near zero.
#' @param align_genes Logical. If TRUE, then Y, X, bg, and wts are row-aligned
#' by shared genes.
#' @param maxit Maximum number of iterations. Default 1000.
#' @return a list:
#' \itemize{
#' \item beta: matrix of cell abundance estimates, cells in rows and
#' observations in columns
#' \item sigmas: covariance matrices of each observation's beta estimates
#' \item p: matrix of p-values for H0: beta == 0
#' \item t: matrix of t-statistics for H0: beta == 0
#' \item se: matrix of standard errors of beta values
#' \item resids: a matrix of residuals from the model fit.
#' (log2(pmax(y, lower_thresh)) - log2(pmax(xb, lower_thresh))).
#' }
#' @import stats
#' @importFrom stats pnorm
#' @keywords internal
#' @noRd
algorithm2 <- function(Y, X, bg = 0, weights = NULL,
                       resid_thresh = 3, lower_thresh = 0.5,
                       align_genes = TRUE, maxit = 1000) {
    
    # align genes:
    if (align_genes) {
        sharedgenes <- intersect(rownames(X), rownames(Y))
        Y <- Y[sharedgenes, ]
        X <- X[sharedgenes, ]
        if (is.matrix(bg)) {
            bg <- bg[sharedgenes, ]
        }
        if (is.matrix(weights)) {
            weights <- weights[sharedgenes, ]
        }
    }
    
    # format the data nicely:
    tidied <- tidy_X_and_Y(X, Y)
    X <- tidied$X
    Y <- tidied$Y
    if ((length(bg) > 0) & (is.vector(bg))) {
        bg <- matrix(bg, nrow = length(bg))
    }
    
    # select an epsilon (lowest non-zero value to use)
    epsilon <- min(Y[(Y > 0) & !is.na(Y)])
    
    
    # initial run to look for outliers:
    out0 <- deconLNR(
        Y = Y, X = X, bg = bg, weights = weights, epsilon = epsilon,
        maxit = maxit
    )
    # also get yhat and resids:
    out0$yhat <- X %*% out0$beta + bg
    out0$resids <- log2(pmax(Y, lower_thresh)) -
        log2(pmax(out0$yhat, lower_thresh))
    
    # ID bad genes:
    outliers <- flagOutliers(
        Y = Y,
        yhat = out0$yhat,
        wts = weights,
        resids = out0$resids,
        resid_thresh = resid_thresh
    )
    
    # remove outlier data points:
    Y.nooutliers <- replace(Y, outliers, NA)
    
    # re-run decon without outliers:
    out <- deconLNR(
        Y = Y.nooutliers,
        X = X,
        bg = bg,
        weights = weights,
        epsilon = epsilon
    )
    out$yhat <- X %*% out$beta + bg
    out$resids <- log2(pmax(Y.nooutliers, 0.5)) - log2(pmax(out$yhat, 0.5))
    
    # compute p-values
    tempbeta <- out$beta
    tempse <- tempp <- tempt <- tempbeta * NA
    for (i in seq_len(ncol(tempse))) {
        tempse[, i] <- suppressWarnings(sqrt(diag(out$sigmas[, , i])))
    }
    tempt <- (tempbeta / tempse)
    tempp <- 2 * (1 - stats::pnorm(tempt))
    out$p <- tempp
    out$t <- tempt
    out$se <- tempse
    
    # structure of output: beta, hessians, yhat, resids
    return(out)
}



#' Function to format Y, X inputs for decon
#'
#' Takes user-supplied X and Y, checks for accuracy, aligns by dimnames, adds
#' dimnames if missing
#'
#' @param X X matrix
#' @param Y Data matrix
#' @return X and Y, both formatted as matrices, with full dimnames and aligned
#' to each other by dimname
#' @keywords internal
#' @noRd
tidy_X_and_Y <- function(X, Y) {
    
    # format as matrices:
    Ynew <- Y
    if (is.vector(Y)) {
        Ynew <- matrix(Y, nrow = length(Y), dimnames = list(names(Y), "y"))
    }
    Xnew <- X
    
    # check alignment:
    if (!identical(rownames(Y), rownames(X))) {
        warning("Rows (genes) of X and Y are mis-aligned.")
    }
    out <- list(X = Xnew, Y = Ynew)
}
Nanostring-Biostats/SpatialDecon documentation built on Dec. 19, 2024, 12:57 a.m.