#' Generates count data for regulatory regions. This function is best for
#' WINDOWS USERS ONLY. If you are using Linux or MacOS, getCountsFast is the
#' better choice (it is faster).
#'
#'
#' Counts the number of reads in each regulatory region for
#' each sample type -- read count is derived from user-input BAM filex, and regions
#' of interest are supplied in a GRanges object, ideally output of combineAnnotatePeaks.
#' The function getCounts generates count data using the summerizeOverlaps
#' function from the GenomicAlignments package. This function is slower than the
#' count function getCountsFast in the ALTRE package. However,
#' getCounts MUST be used to count reads on a Windows
#' computer -- getCountsFast is not available in Windows.
#' If the package is being run on Linux or MacOS, use getCountsFast. For
#' high-thoughput experiments (many samples need to be
#' analyzed), it is highly suggested that a non-Windows computer is used (MacOS/Linux).
#' To be clear: GetCounts and getCountsFast give the EXACT SAME results.
#'
#' @param annotpeaks list output from combineAnnotatePeaks() function
#' @param sampleinfo dataframe as returned from loadCSVFile() function
#' @param reference name of sample type to be
#' considered 'reference' in DESeq2 analysis
#' @param singleEnd whether input data is single-end (default is TRUE)
#' @param chrom optional, only chromosome chrom will be evaluated
#'
#' @return List containing three items:
#' (1) DESeqDataSet: contains count information for all replicates of all samples
#' (2) Matrix: contains number of TSS-distal and TSS-proximal
#' before and after filtering (if applicable)
#' (3) Data frame for creating a density plot (use function plotgetcounts()
#'
#'
#' @examples
#' \dontrun{
#' csvfile <- loadCSVFile("DNAseEncodeExample.csv")
#' samplePeaks <- loadBedFiles(csvfile)
#' consensusPeaks <- getConsensusPeaks(samplepeaks = samplePeaks, minreps = 2)
#' TSSannot <- getTSS()
#' consensusPeaksAnnotated <- combineAnnotatePeaks(conspeaks = consensusPeaks,
#' TSS = TSSannot,
#' merge = TRUE,
#' regionspecific = TRUE,
#' distancefromTSSdist = 1500,
#' distancefromTSSprox = 1000)
#' consensusPeaksCounts <- getCounts(annotpeaks = consensusPeaksAnnotated,
#' sampleinfo = csvfile,
#' reference = 'SAEC',
#' chrom = 'chr21')
#' }
#' @export
getCounts <- function(annotpeaks,
sampleinfo,
reference,
singleEnd=TRUE,
chrom = NULL) {
bamfileslist <- loadBamFiles(sampleinfo)
if (is.null(chrom) == FALSE) {
inputgranges <- annotpeaks[[1]][seqnames(annotpeaks[[1]]) == chrom,
]
} else {
inputgranges <- annotpeaks[[1]]
}
# Count number of reads overlapping each annotated peak
if (singleEnd == TRUE) {
countsse <- GenomicAlignments::summarizeOverlaps(features = inputgranges,
reads = bamfileslist,
mode = "Union",
singleEnd = TRUE,
ignore.strand = TRUE)
}
else {
countsse <- GenomicAlignments::summarizeOverlaps(features = inputgranges,
reads = bamfileslist,
mode = "Union",
singleEnd = FALSE,
fragments = TRUE,
ignore.strand = TRUE)
}
# add column labels
SummarizedExperiment::colData(countsse) <- DataFrame(sampleinfo[, c(1:4)])
countsse$sample <- as.factor(countsse$sample)
countsse$status <- stats::relevel(countsse$sample, reference)
countssedds <- DESeq2::DESeqDataSet(countsse, design = ~status)
# Optional filtering out of lowcount regions As part of the DESeq2
# algorithm, more stringent filtering will be applied subsequently
# countssedds[ rowSums(counts(countssedds)) > 1, ]
# get counts referenceized by librarysize
normcountssedds <- SummarizedExperiment::assay(countssedds, norm = T)
# get region/peak size
originaldata <- grangestodataframe(inputgranges)
regionsize <- originaldata$stop - originaldata$start
# Calculate RPKM for plotting densities multiply by 10^6 and divide by
# regions size to get rpkm
myrpkm <- as.data.frame(normcountssedds[, 1] * 10 ^ 6/regionsize)
for (i in 2:ncol(normcountssedds)) {
myrpkm[, i] <- normcountssedds[, i] * 10 ^ 6/regionsize
}
# take the log2 so that it is a normalized distribution
myrpkmlog2 <- log2(as.matrix(myrpkm) + 1)
colnames(myrpkmlog2) <- unlist(lapply(paste(sampleinfo$sample,
sampleinfo$replicate,
sep = "_"),
as.character)
)
#########################################
# Create stats matrix originaldata is created ~ 10 lines lines above
colnames(originaldata) <- unlist(lapply(colnames(originaldata), gsub,
pattern = "meta.", replacement = ""))
tssdistnum <- length(which(originaldata$region == "TSS-distal"))
tssproxnum <- length(which(originaldata$region == "TSS-proximal"))
statdf <- data.frame(Num_TSSdistals = tssdistnum,
Num_TSSproximals = tssproxnum)
#########################################
# Create densityplot
region <- originaldata$region
forplotdf <- cbind(myrpkmlog2, as.data.frame(region))
colnames(SummarizedExperiment::rowData(countssedds)) <-
gsub("meta.","", colnames(SummarizedExperiment::rowData(countssedds)))
return(list(regioncounts = countssedds, regioncountstats = statdf,
regioncountsforplot = forplotdf, reference))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.