plotDistCountAnalysis: Creates a boxplot to see the distribution of read counts in...

Description Usage Arguments Value Examples

Description

Takes the rlog transformation of the RRKM (Reads Per Kilobase of transcript per Million) of the read counts of type-specific and shared regulatory regions and plots the distribution of those read counts in all sample types analyzed in the workflow.

Usage

1
2
3
4
5
plotDistCountAnalysis(analysisresults, counts, viewer = TRUE,
  palette = c("#C71585", "#d3d3d3", "#00E5EE", "#000080"),
  xlabelsize = "13px", ylabel = "log2(FPKM)", ylabelsize = "13px",
  maintitle = "Distribution of Normalized Counts (peaks types determine by intensity)",
  maintitlesize = "20px", xlabel = NULL)

Arguments

analysisresults

output generated from countanalysis() then categAltrePeaks()

counts

output generated from getCounts()

viewer

whether the plot should be displayed in the RStudio viewer or in Shiny/Knittr

palette

choose an RColorBrewer palette ("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", etc.) or submit a vector of colors

xlabelsize

size of xlabel (default, 15px)

ylabel

label for y-axis (default, "Observations")

ylabelsize

size of ylabel (default, 15px)

maintitle

main title (default, "Distribution of Normalized Counts")

maintitlesize

main title size (default, 20px)

xlabel

label for x-axis (default, sample names)

Value

a highcharter object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
## Not run: 
csvfile <- loadCSVFile("DNaseEncodeExample.csv")
samplePeaks <- loadBedFiles(csvfile)
consensusPeaks <- getConsensusPeaks(samplepeaks = samplePeaks,
minreps = 2)
TSSannot <- getTSS()
consensusPeaksAnnotated <- combineAnnotatePeaks(conspeaks = consensusPeaks,
TSS = TSSannot,
merge = TRUE,
regionspecific = TRUE,
distancefromTSSdist = 1500,
distancefromTSSprox = 1000)
consensusPeaksCounts <- getCounts(annotpeaks = consensusPeaksAnnotated,
                                 sampleinfo = csvfile,
                                 reference = 'SAEC',
                                 chrom = 'chr21')
alteredPeaks <- countanalysis(counts = consensusPeaksCounts,
pval = 0.01,
lfcvalue = 1)
alteredPeaksCategorized <- categAltrePeaks(alteredPeaks,
                                          lfctypespecific = 1.5,
                                          lfcshared = 1.2,
                                          pvaltypespecific = 0.01,
                                          pvalshared = 0.05)
plotDistCountAnalysis(analysisresults = alteredPeaksCategorized, counts = consensusPeaksCounts)

## End(Not run)

Mathelab/ALTRE documentation built on May 7, 2019, 3:41 p.m.