R/functions-core.R

Defines functions groupSamples compareSamples generateGDM clusterIndividualSamples orderCellsMonocle embedCells selectFeatures aggregateSamples removeTinySamples bindSeuratObj createDataObj project2MSTUpdated gaussianffLocal assignCellClusterNearestNode getArithmeticCentroids identifyCentroids retrieveRefClusters getSampleSizes

Documented in aggregateSamples assignCellClusterNearestNode bindSeuratObj clusterIndividualSamples compareSamples createDataObj embedCells gaussianffLocal generateGDM getArithmeticCentroids getSampleSizes groupSamples identifyCentroids orderCellsMonocle removeTinySamples retrieveRefClusters selectFeatures

################
## FUNCTIONS ###
################

#########################################################
### Private methods below (not exported in namespace) ###
#########################################################

#' @title Retrieve single-cell sample sizes
#' @description Takes initial list of single-cell samples and returns vector containing number of cells in each sample.
#' @details Private method (not exported in namespace)
#' @param data_list List of length num_samples (each element has dimension num_cells x num_markers)
#' @return Vector of length num_samples representing number of cells in each sample
#' @examples
#' \dontrun{
#' sample_sizes <- getSampleSizes(all_expn_data)
#' }

getSampleSizes <- function(data_list) {
    return(vapply(data_list, nrow, integer(1L)))
}

#' @title Retrieve reference cell clusters
#' @description Takes initial Phemd struct and returns cell clusters as assigned by clustering algorithm (e.g. PHATE or Monocle2)
#' @details Private method (not exported in namespace)
#' @param obj Phemd struct containing cell-state embedding object and underlying expression data
#' @param cell_model String representing data model for cell-state space ("seurat", "monocle2", or "phate")
#' @param expn_type String representing whether to return raw expression values or coordinates in dimensionality-reduced feature space
#' @param ndim Number of dimensions in reduced dimensionality space (e.g. PHATE / CCA) to use (only relevant in reduced dimensionality space)
#' @return List of data matrices; each list element is of size num_cells_in_cluster x num_markers and represents a distinct cell cluster
#' @examples
#' \dontrun{
#' cluster_expression_data <- retrieveRefClusters(my_phemdObj)
#' }
#'

retrieveRefClusters <- function(obj, cell_model=c('monocle2','seurat', 'phate'), expn_type='reduced', ndim=10) {
    cell_model <- match.arg(cell_model, c('monocle2','seurat', 'phate'))
    if(cell_model == 'monocle2') {
        # Extract state labels from monocle data object
        monocle_obj <- monocleInfo(obj)
        labels <- pData(phenoData(monocle_obj))
        state_labels <- as.numeric(labels$State)
        
        # Split data frame based on cluster assignments
        if(expn_type == 'reduced') {
            mydata <- as.data.frame(t(reducedDimS(obj@monocle_obj)))
            if(ndim < ncol(mydata)) {
                mydata <- mydata[,1:ndim]
            }
        } else if(expn_type == 'raw') {
            mydata <- as.data.frame(t(pooledCells(obj)))
        }
    } else if(cell_model == 'seurat') {
        seurat_obj <- seuratInfo(obj)
        state_labels <- as.numeric(as.character(Idents(seurat_obj)))
        if(min(state_labels) == 0) state_labels <- state_labels + 1 #ensure cluster labels are 1 indexed instead of zero indexed
        names(state_labels) <- names(Idents(seurat_obj)) # label cluster assignments with cell name
        if(expn_type == 'cca.aligned') {
            # aligned CCA expression data (num_cells x num_markers)
            mydata <- Embeddings(object = seurat_obj, reduction = 'cca.aligned')[,seq_len(ndim)]
        } else if(expn_type %in% c('pca', 'reduced')) {
            mydata <- Embeddings(object = seurat_obj, reduction = 'pca')[,seq_len(ndim)]
        } else if(expn_type == 'tsne') {
            mydata <- Embeddings(object = seurat_obj, reduction = 'tsne')[,seq_len(ndim)]
        } else if(expn_type == 'umap') {
            mydata <- Embeddings(object = seurat_obj, reduction = 'umap')[,seq_len(ndim)]
        } else if(expn_type == 'raw') {
            mydata <- t(as.matrix(GetAssayData(seurat_obj, assay='RNA', slot='counts')))
        } else {
            stop('Error: expn_type must be one of the following: "raw", "pca", "umap", "tsne", "cca.aligned", "reduced"')
        }
        
        # Split data frame based on cluster assignments
        mydata <- as.data.frame(mydata)
    } else if(cell_model == 'phate') {
        phate_obj <- phateInfo(obj)
        state_labels <- phate_obj$cellstate.labels
        
        # Split data frame based on cluster assignments
        if(expn_type == 'reduced') {
            mydata <- as.data.frame(phate_obj$embedding)
            if(ndim < ncol(mydata)) {
                mydata <- mydata[,1:ndim]
            }
        } else if(expn_type == 'raw') {
            mydata <- as.data.frame(t(pooledCells(obj)))
        } else {
            stop('Error: expn_type must be either "raw" or "reduced"')
        }
    } else {
        stop('Error: cell_model must be either "monocle2", "seurat", or "phate"')
    }
    ref_clusters <- split(mydata, state_labels)
    return(ref_clusters)
}


#' @title Identify cluster centroids (cell names)
#' @description Takes initial list and returns list of cell names representing centroid of cluster
#' @details Private method (not exported in namespace)
#' @param ref_clusters list containing each cluster of interest (each list element is a matrix of dimension num_cells x num_markers)
#' @return List of names; element \var{i} represents the name of the cell in cluster \var{i} that is closest to the centroid (arithmetic mean) of cluster \var{i}
#' @examples
#' \dontrun{
#' centroid_names <- identifyCentroids(ref_clusters)
#' }
identifyCentroids <- function(ref_clusters) {
    centroids <- lapply(ref_clusters, function(cur_cluster) {
        arith_centroid <- colMeans(cur_cluster)
        curdist <- t(as.matrix(apply(cur_cluster, 1, function(x) norm(x-arith_centroid, type="2"))))
        closest_cell <- colnames(curdist)[which.min(curdist)] #closest cell to arithmetic centroid
        return(closest_cell)
    })
    return(centroids)
}


#' @title Get arithmetic centroids (coordinates)
#' @description Takes initial list and returns a matrix with row \var{i} representing the arithmetic centroid of cluster \var{i}
#' @details Private method (not exported in namespace)
#' @param ref_clusters list containing each cluster of interest (each list element is a matrix of dimension num_cells x num_markers)
#' @return Matrix of dimension num_cluster x num_markers; row \var{i} representing the arithmetic centroid of cluster \var{i}
#' @examples
#' \dontrun{
#' cluster_centroids <- getArithmeticCentroids(ref_clusters)
#' }
getArithmeticCentroids <- function(ref_clusters) {
    if(length(ref_clusters) < 1) stop('Error: input requires at least 1 reference cluster')
    
    #centroids <- matrix(0, nrow=length(ref_clusters), ncol = ncol(ref_clusters[[1]]))
    #for(i in seq_len(length(ref_clusters))) {
    #  cur_cluster <- ref_clusters[[i]]
    #  centroids[i,] <- colMeans(cur_cluster)
    #}
    
    centroids_list <- lapply(ref_clusters, colMeans)
    centroids <- do.call(rbind, centroids_list)
    return(centroids)
}

#' @title Assign cells to a reference cell subtype
#' @description Assigns each cell in \code{cur_cells} to a cluster based on nearest cell in Monocle 2 tree
#' @details Private method (not exported in namespace). Uses RANN package for fast knn search
#' @param cur_cells Matrix of cells to be assigned to clusters (Dim: \var{num_cells} x \var{num_markers})
#' @param ref_cells Matrix of cells used to build reference Monocle 2 tree (Dim: \var{num_monocle_cells} x \var{num_markers})
#' @param ref_cell_labels Vector of length \var{num_monocle_cells} containing Monocle 2 cell branch assignments
#' @param cell_model Either "monocle2", "seurat", or "phate" depending on method used to model cell state space
#' @return Vector of length \var{num_cells} representing cluster assignments for each cell in \var{cur_cells}
#' @examples
#' \dontrun{
#' cur_cells_cluster_labels <- assignCellClusterNearestNode(cur_cells_expn_data,
#' clustered_cells_expn_data, clustered_cells_cluster_labels, cell_model='monocle2')
#' }
assignCellClusterNearestNode <- function(cur_cells, ref_cells, ref_cell_labels, cell_model=c('monocle2', 'seurat', 'phate')) {
    if(nrow(ref_cells) != length(ref_cell_labels)) stop("Error: number of cells and cell labels do not match")
    
    closest <- RANN::nn2(data = ref_cells, query = cur_cells, k = 1) #fast nearest neighbor search
    nearest_cell <- closest$nn.idx
    
    cell_model <- match.arg(cell_model, c('monocle2','seurat', 'phate'))
    if(cell_model %in% c('monocle2', 'phate')) {
        assigned <- ref_cell_labels[nearest_cell]
    } else if(cell_model == 'seurat') {
        nearest_cell_names <- rownames(ref_cells)[nearest_cell]
        assigned <- as.numeric(ref_cell_labels[nearest_cell_names])
    } else {
        stop('Error: cell_model must be either monocle2, seurat, or phate')
    }
    
    return(assigned)
}

#' @title Models expression data using generalized linear model with Gaussian error
#' @description Useful for modeling pre-normalized single-cell expression data.
#' @details Private method (not to be called by user directly). Requires VGAM package. Obtained from VGAM v1.0-5 (https://www.rdocumentation.org/packages/VGAM/versions/1.0-5/topics/gaussianff)
#' @param dispersion Dispersion parameter. If 0, then estimate as described in VGAM 1.0-5 documentation.
#' @param parallel A logical or formula. If a formula, the response of the formula should be a logical and the terms of the formula indicates whether or not those terms are parallel.
#' @param zero An integer-valued vector specifying which linear/additive predictors are modelled as intercepts only. The values must be from the set {1...M} where Mis the number of columns of the matrix response.
#' @return Generalized linear model with Gaussian error
#'
gaussianffLocal <- function(dispersion = 0, parallel = FALSE, zero = NULL) {
    if (!VGAM::is.Numeric(dispersion, length.arg = 1) || dispersion <
    0) {
        stop("bad input for argument 'dispersion'")
    }
    estimated.dispersion <- dispersion == 0
    cur_constraints <- expression({
        cur_constraints <- VGAM::cm.VGAM(matrix(1, M, 1),
        x = x, bool = parallel,
        constraints = constraints
        )
        cur_constraints <- VGAM::cm.zero.VGAM(constraints,
        x = x, zero,
        M = M, predictors.names = predictors.names, M1 = 1
        )
    })
    deviance_fn <- function(mu,y, w, residuals = FALSE, eta, extra = NULL) {
        M <- if (is.matrix(y)) {
            ncol(y)
        } else {
            1
        }
        n <- if (is.matrix(y)) {
            nrow(y)
        } else {
            length(y)
        }
        wz <- VGAM:::VGAM.weights.function(w = w, M = M, n = n)
        if (residuals) {
            if (M > 1) {
                U <- vchol(wz, M = M, n = n)
                temp <- mux22(U, y - mu,
                M = M, upper = TRUE,
                as.matrix = TRUE
                )
                dimnames(temp) <- dimnames(y)
                temp
            }
            else {
                (y - mu) * sqrt(wz)
            }
        }
        else {
            ResSS.vgam(y - mu, wz = wz, M = M)
        }
    }
    
    infos_fn <- function(...) {
        list(
        M1 = 1, Q1 = 1, expected = TRUE, multipleResponses = TRUE,
        quasi.type = TRUE, zero = zero
        )
    }
    
    init_expn <- expression({
        if (is.R()) assign("CQO.FastAlgorithm", TRUE, envir = VGAM::VGAMenv) else CQO.FastAlgorithm <<- TRUE
        if (any(function.name == c("cqo", "cao")) && (length(zero) ||
        (is.logical(parallel) && parallel))) {
            stop("cannot handle non-default arguments for cqo() and cao()")
        }
        temp5 <- w.y.check(
        w = w, y = y, ncol.w.max = Inf, ncol.y.max = Inf,
        out.wy = TRUE, colsyperw = 1, maximize = TRUE
        )
        w <- temp5$w
        y <- temp5$y
        M <- if (is.matrix(y)) ncol(y) else 1
        dy <- dimnames(y)
        predictors.names <- if (!is.null(dy[[2]])) {
            dy[[2]]
        } else {
            param.names(
            "Y",
            M
            )
        }
        if (!length(etastart)) etastart <- 0 * y
    })
    
    last_expn <- expression({
        dy <- dimnames(y)
        if (!is.null(dy[[2]])) dimnames(fit$fitted.values) <- dy
        dpar <- dispersion
        if (!dpar) {
            wz <- VGAM:::VGAM.weights.function(w = w, M = M, n = n)
            temp5 <- ResSS.vgam(y - mu, wz = wz, M = M)
            dpar <- temp5 / (length(y) - (if (is.numeric(ncol(X.vlm.save))) ncol(X.vlm.save) else 0))
        }
        misc$dispersion <- dpar
        misc$default.dispersion <- 0
        misc$estimated.dispersion <- estimated.dispersion
        misc$link <- rep_len("identitylink", M)
        names(misc$link) <- predictors.names
        misc$earg <- vector("list", M)
        for (ilocal in seq_len(M)) misc$earg[[ilocal]] <- list()
        names(misc$link) <- predictors.names
        if (is.R()) {
            if (exists("CQO.FastAlgorithm", envir = VGAM::VGAMenv)) {
                rm("CQO.FastAlgorithm",
                envir = VGAM::VGAMenv
                )
            }
        } else {
            while (exists("CQO.FastAlgorithm")) remove("CQO.FastAlgorithm")
        }
        misc$expected <- TRUE
        misc$multipleResponses <- TRUE
    })
    
    loglikelihood_fn <- function(mu, y, w, residuals = FALSE,
    eta, extra = NULL, summation = TRUE) {
        M <- if (is.matrix(y)) {
            ncol(y)
        } else {
            1
        }
        n <- if (is.matrix(y)) {
            nrow(y)
        } else {
            length(y)
        }
        wz <- VGAM:::VGAM.weights.function(w = w, M = M, n = n)
        if (residuals) {
            stop("loglikelihood residuals not implemented yet")
        }
        else {
            temp1 <- ResSS.vgam(y - mu, wz = wz, M = M)
            ll.elts <- if (M == 1 || ncol(wz) == M) {
                -0.5 * temp1 + 0.5 * (log(wz)) - n * (M / 2) *
                log(2 * pi)
            }
            else {
                if (all(wz[1, ] == apply(wz, 2, min)) && all(wz[1, ] == apply(wz, 2, max))) {
                    onewz <- m2a(wz[1, , drop = FALSE], M = M)
                    onewz <- onewz[, , 1]
                    logdet <- determinant(onewz)$modulus
                    logretval <- -0.5 * temp1 + 0.5 * n * logdet -
                    n * (M / 2) * log(2 * pi)
                    distval <- stop("variable 'distval' not computed yet")
                    logretval <- -(ncol(onewz) * log(2 * pi) +
                    logdet + distval) / 2
                    logretval
                }
                else {
                    logretval <- -0.5 * temp1 - n * (M / 2) * log(2 * pi)
                    for (ii in seq_len(n)) {
                        onewz <- m2a(wz[ii, , drop = FALSE], M = M)
                        onewz <- onewz[, , 1]
                        logdet <- determinant(onewz)$modulus
                        logretval <- logretval + 0.5 * logdet
                    }
                    logretval
                }
            }
            if (summation) {
                sum(ll.elts)
            }
            else {
                ll.elts
            }
        }
    }
    validparams_fn <- function(eta, y, extra = NULL) {
        okay1 <- all(is.finite(eta))
        okay1
    }
    
    new("vglmff",
    blurb = c(
    "Vector linear/additive model\n",
    "Links:    identitylink for Y1,...,YM"
    ), constraints = cur_constraints, deviance = deviance_fn, infos = infos_fn,
    initialize = init_expn, linkinv = function(eta, extra = NULL) eta,
    last = last_expn,
    loglikelihood = loglikelihood_fn, linkfun = function(mu, extra = NULL) mu,
    vfamily = "gaussianff",
    validparams = validparams_fn, deriv = expression({
        wz <- VGAM:::VGAM.weights.function(w = w, M = M, n = n)
        mux22(cc = t(wz), xmat = y - mu, M = M, as.matrix = TRUE)
    }), weight = expression({
        wz
    })
    )
}

#' @title project2MST (updated from monocle v2.24.1 package for R 4.0+ compatibliity)
#' @description project2MST
#' @details Private method (not to be called by user directly). Adapted from monocle v2.24.1 (https://www.bioconductor.org/packages/release/bioc/manuals/monocle/man/monocle.pdf)
#' @param cds the CellDataSet upon which to perform this operation
#' @param Projection_Method the projection method
#' @return CellDataSet with updatedtrajectory inference
project2MSTUpdated <- function(cds, Projection_Method) 
{
    dp_mst <- minSpanningTree(cds)
    Z <- reducedDimS(cds)
    Y <- reducedDimK(cds)
    cds <- monocle:::findNearestPointOnMST(cds)
    closest_vertex <- cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_closest_vertex
    closest_vertex_names <- colnames(Y)[closest_vertex]
    closest_vertex_df <- as.matrix(closest_vertex)
    row.names(closest_vertex_df) <- row.names(closest_vertex)
    tip_leaves <- names(which(degree(dp_mst) == 1))
    if (!is.function(Projection_Method)) {
        P <- Y[, closest_vertex]
    }
    else {
        P <- matrix(rep(0, length(Z)), nrow = nrow(Z))
        for (i in 1:length(closest_vertex)) {
            neighbors <- names(V(dp_mst)[suppressWarnings(nei(closest_vertex_names[i], 
                                                              mode = "all"))])
            projection <- NULL
            distance <- NULL
            Z_i <- Z[, i]
            for (neighbor in neighbors) {
                if (closest_vertex_names[i] %in% tip_leaves) {
                    tmp <- monocle:::projPointOnLine(Z_i, Y[, c(closest_vertex_names[i], 
                                                      neighbor)])
                }
                else {
                    tmp <- Projection_Method(Z_i, Y[, c(closest_vertex_names[i], 
                                                        neighbor)])
                }
                projection <- rbind(projection, tmp)
                distance <- c(distance, dist(rbind(Z_i, tmp)))
            }
            if (!inherits(projection, "matrix")) { #Updated from class(mydata) != "matrix"
                projection <- as.matrix(projection)
            }
            P[, i] <- projection[which(distance == min(distance))[1], 
            ]
        }
    }
    colnames(P) <- colnames(Z)
    dp <- as.matrix(dist(t(P)))
    min_dist = min(dp[dp != 0])
    dp <- dp + min_dist
    diag(dp) <- 0
    cellPairwiseDistances(cds) <- dp
    gp <- graph.adjacency(dp, mode = "undirected", weighted = TRUE)
    dp_mst <- minimum.spanning.tree(gp)
    cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_tree <- dp_mst
    cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_dist <- P
    cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_closest_vertex <- closest_vertex_df
    cds
}

#' @title newCellDataSetUpdated (updated from monocle v2.24.1 package for R 4.0+ compatibliity)
#' @description Creates new CDS
#' @details Private method (not to be called by user directly). Adapted from monocle v2.24.1 (https://www.bioconductor.org/packages/release/bioc/manuals/monocle/man/monocle.pdf)
#' @param cellData the CellDataSet upon which to perform this operation
#' @param phenoData phenoData
#' @param featureData featureData
#' @param lowerDetectionLimit lowerDetectionLimit
#' @param expressionFamily expressionFamily
#' @return CellDataSet
newCellDataSetUpdated <- function (cellData, phenoData = NULL, featureData = NULL, lowerDetectionLimit = 0.1, 
             expressionFamily = VGAM::negbinomial.size()) 
{
    if (!("gene_short_name" %in% colnames(featureData))) {
        warning("Warning: featureData must contain a column verbatim named 'gene_short_name' for certain functions")
    }
    if (!inherits(cellData, "matrix") && any(isSparseMatrix(cellData) == 
        FALSE)) {
        stop("Error: argument cellData must be a matrix (either sparse from the Matrix package or dense)")
    }
    if (!("gene_short_name" %in% colnames(featureData))) {
        warning("Warning: featureData must contain a column verbatim named 'gene_short_name' for certain functions")
    }
    sizeFactors <- rep(NA_real_, ncol(cellData))
    if (is.null(phenoData)) 
        phenoData <- annotatedDataFrameFrom(cellData, byrow = FALSE)
    if (is.null(featureData)) 
        featureData <- annotatedDataFrameFrom(cellData, byrow = TRUE)
    if (!("gene_short_name" %in% colnames(featureData))) {
        warning("Warning: featureData must contain a column verbatim named 'gene_short_name' for certain functions")
    }
    phenoData$Size_Factor <- sizeFactors
    cds <- new("CellDataSet", assayData = assayDataNew("environment", 
                                                       exprs = cellData), phenoData = phenoData, featureData = featureData, 
               lowerDetectionLimit = lowerDetectionLimit, expressionFamily = expressionFamily, 
               dispFitInfo = new.env(hash = TRUE))
    validObject(cds)
    cds
}
    
#' @title orderCells (updated from monocle v2.24.1 package for R 4.0+ compatibliity)
#' @description Orders cells according to pseudotime.
#' @details Private method (not to be called by user directly). Adapted from monocle v2.24.1 (https://www.bioconductor.org/packages/release/bioc/manuals/monocle/man/monocle.pdf)
#' @param cds the CellDataSet upon which to perform this operation
#' @param root_state The state to use as the root of the trajectory.
#' @param params num_paths the number of end-point cell states to allow in the biological process.
#' @param reverse whether to reverse the beginning and end points of the learned biological process.
#' @return CellDataSet with updatedtrajectory inference
orderCellsUpdated <- function (cds, root_state = NULL, num_paths = NULL, reverse = NULL) 
{
    if (class(cds)[1] != "CellDataSet") {
        stop("Error cds is not of type 'CellDataSet'")
    }
    if (is.null(cds@dim_reduce_type)) {
        stop("Error: dimensionality not yet reduced. Please call reduceDimension() before calling this function.")
    }
    if (any(c(length(cds@reducedDimS) == 0, length(cds@reducedDimK) == 
              0))) {
        stop("Error: dimension reduction didn't prodvide correct results. Please check your reduceDimension() step and ensure correct dimension reduction are performed before calling this function.")
    }
    root_cell <- monocle:::select_root_cell(cds, root_state, reverse)
    cds@auxOrderingData <- new.env(hash = TRUE)
    if (cds@dim_reduce_type == "ICA") {
        if (is.null(num_paths)) {
            num_paths = 1
        }
        adjusted_S <- t(cds@reducedDimS)
        dp <- as.matrix(dist(adjusted_S))
        cellPairwiseDistances(cds) <- as.matrix(dist(adjusted_S))
        gp <- graph.adjacency(dp, mode = "undirected", weighted = TRUE)
        dp_mst <- minimum.spanning.tree(gp)
        minSpanningTree(cds) <- dp_mst
        next_node <<- 0
        res <- pq_helper(dp_mst, use_weights = FALSE, root_node = root_cell)
        cds@auxOrderingData[[cds@dim_reduce_type]]$root_cell <- root_cell
        order_list <- monocle:::extract_good_branched_ordering(res$subtree, 
                                                     res$root, cellPairwiseDistances(cds), num_paths, 
                                                     FALSE)
        cc_ordering <- order_list$ordering_df
        row.names(cc_ordering) <- cc_ordering$sample_name
        minSpanningTree(cds) <- as.undirected(order_list$cell_ordering_tree)
        pData(cds)$Pseudotime <- cc_ordering[row.names(pData(cds)), 
        ]$pseudo_time
        pData(cds)$State <- cc_ordering[row.names(pData(cds)), 
        ]$cell_state
        mst_branch_nodes <- V(minSpanningTree(cds))[which(degree(minSpanningTree(cds)) > 
                                                              2)]$name
        minSpanningTree(cds) <- dp_mst
        cds@auxOrderingData[[cds@dim_reduce_type]]$cell_ordering_tree <- as.undirected(order_list$cell_ordering_tree)
    }
    else if (cds@dim_reduce_type == "DDRTree") {
        if (is.null(num_paths) == FALSE) {
            message("Warning: num_paths only valid for method 'ICA' in reduceDimension()")
        }
        cc_ordering <- monocle:::extract_ddrtree_ordering(cds, root_cell)
        pData(cds)$Pseudotime <- cc_ordering[row.names(pData(cds)), 
        ]$pseudo_time
        K_old <- reducedDimK(cds)
        old_dp <- cellPairwiseDistances(cds)
        old_mst <- minSpanningTree(cds)
        old_A <- reducedDimA(cds)
        old_W <- reducedDimW(cds)
        cds <- project2MSTUpdated(cds, monocle:::project_point_to_line_segment) #Calling local updated version of this fx
        minSpanningTree(cds) <- cds@auxOrderingData[[cds@dim_reduce_type]]$pr_graph_cell_proj_tree
        root_cell_idx <- which(V(old_mst)$name == root_cell, 
                               arr.ind = T)
        cells_mapped_to_graph_root <- which(cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_closest_vertex == 
                                                root_cell_idx)
        if (length(cells_mapped_to_graph_root) == 0) {
            cells_mapped_to_graph_root <- root_cell_idx
        }
        cells_mapped_to_graph_root <- V(minSpanningTree(cds))[cells_mapped_to_graph_root]$name
        tip_leaves <- names(which(degree(minSpanningTree(cds)) == 
                                      1))
        root_cell <- cells_mapped_to_graph_root[cells_mapped_to_graph_root %in% 
                                                    tip_leaves][1]
        if (is.na(root_cell)) {
            root_cell <- select_root_cell(cds, root_state, reverse)
        }
        cds@auxOrderingData[[cds@dim_reduce_type]]$root_cell <- root_cell
        cc_ordering_new_pseudotime <- monocle:::extract_ddrtree_ordering(cds, 
                                                               root_cell)
        pData(cds)$Pseudotime <- cc_ordering_new_pseudotime[row.names(pData(cds)), 
        ]$pseudo_time
        if (is.null(root_state) == TRUE) {
            closest_vertex <- cds@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_closest_vertex
            pData(cds)$State <- cc_ordering[closest_vertex[, 
                                                           1], ]$cell_state
        }
        monocle:::reducedDimK(cds) <- K_old
        cellPairwiseDistances(cds) <- old_dp
        minSpanningTree(cds) <- old_mst
        monocle:::reducedDimA(cds) <- old_A
        monocle:::reducedDimW(cds) <- old_W
        mst_branch_nodes <- V(minSpanningTree(cds))[which(degree(minSpanningTree(cds)) > 
                                                              2)]$name
    }
    else if (cds@dim_reduce_type == "SimplePPT") {
        if (is.null(num_paths) == FALSE) {
            message("Warning: num_paths only valid for method 'ICA' in reduceDimension()")
        }
        cc_ordering <- monocle:::extract_ddrtree_ordering(cds, root_cell)
        pData(cds)$Pseudotime <- cc_ordering[row.names(pData(cds)), 
        ]$pseudo_time
        pData(cds)$State <- cc_ordering[row.names(pData(cds)), 
        ]$cell_state
        mst_branch_nodes <- V(minSpanningTree(cds))[which(degree(minSpanningTree(cds)) > 
                                                              2)]$name
    }
    cds@auxOrderingData[[cds@dim_reduce_type]]$branch_points <- mst_branch_nodes
    cds
}

############################
### Public methods below ###
############################

#' @title Create 'Phemd' object
#' @description Wrapper function to create 'Phemd' object containing raw expression data and metadata
#' @details Note that each element in list can have different number of rows (i.e. number of cells in each sample can vary).
#' @param data List of length \var{num_samples} containing expression data; each element is of size \var{num_cells} x \var{num_markers}. Alternately a SingleCellExperiment object.
#' @param markers Vector containing marker names (i.e. column names of \code{all_data})
#' @param snames Vector containing sample names (i.e. names of samples contained in \code{all_data})
#' @param datatype Either "list" or "sce" (SingleCellExperiment with genes x cells)
#' @param valtype Type of assay data (i.e. "counts", "normcounts", "logcounts", "tpm", "cpm") if datatype is "sce"
#' @return 'Phemd' object containing raw multi-sample expression data and associated metadata
#' @examples
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#'
createDataObj <- function(data, markers, snames, datatype='list', valtype='counts') {
    if(datatype == 'list') {
        all_data <- data
    } else if(datatype == 'sce') {
        if(valtype %in% names(assays(data))) {
            stop(sprintf('Error: %s not found in input SingleCellExperiment', valtype))
        }
        all_data <- t(assay(data, valtype)) # generally SCE objects are genes x cells; transpose
    } else {
        stop('Error: Input datatype must be either "list" or "sce" (SingleCellExperiment)')
    }
    
    nsample <- length(all_data)
    if(nsample == 0) stop('all_data is empty (length=0)')
    stopifnot(nsample == length(snames))
    if(nsample > 0) {
        stopifnot(ncol(all_data[[1]]) == length(markers))
    }
    
    # Error-checking to ensure that all samples in data list have same number of markers
    nmarker_vec <- rep(0, nsample)
    for(i in seq_len(nsample)) {
        nmarker_vec[i] <- ncol(all_data[[i]])
    }
    if(sum(nmarker_vec - nmarker_vec[1]) != 0) {
        stop(sprintf("Error: Sample %d has a different number of columns than Sample 1", which(nmarker_vec-nmarker_vec[1] != 0)))
    }
    data_obj <- new('Phemd', data = all_data, markers = markers, snames = snames, monocle_obj=NULL, seurat_obj=NULL, version=packageVersion(pkg = 'Seurat'))
    return(data_obj)
}


#' @title Attach 'Seurat' object to 'Phemd' object
#' @description Allows user to attach batch-normalized reference cell data from Seurat into 'Phemd' object containing raw expression data and metadata
#' @param phemd_obj Phemd object initialized using createDataObj
#' @param seurat_obj S4 'seurat' object containing batch-normalized reference cell data
#' @param batch.colname Name of column in Seurat object that denotes batch ID
#' @return 'Phemd' object containing with attached Seurat object
#' @examples
#' 
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_seuratObj <- Seurat::CreateSeuratObject(counts = t(all_expn_data[[1]]), project = "A")
#' my_seuratObj <- Seurat::FindVariableFeatures(object = my_seuratObj)
#' my_seuratObj <- Seurat::ScaleData(object = my_seuratObj, do.scale=FALSE, do.center=FALSE)
#' my_seuratObj <- Seurat::RunPCA(object = my_seuratObj, pc.genes = colnames(all_expn_data[[1]]), do.print = FALSE)
#' my_seuratObj <- Seurat::FindNeighbors(my_seuratObj, reduction = "pca", dims.use = 1:10)
#' my_seuratObj <- Seurat::FindClusters(my_seuratObj, resolution = 0.6, print.output = 0, save.SNN = TRUE)
#' my_phemdObj <- bindSeuratObj(my_phemdObj, my_seuratObj)
#' 
bindSeuratObj <- function(phemd_obj, seurat_obj, batch.colname='plt') {
    stopifnot(is(seurat_obj,'Seurat'))
    # ensure cluster names are 1-indexed
    if(min(as.numeric(as.character(Idents(seurat_obj)))) == 0) {
        label_names <- levels(Idents(seurat_obj))
        labels_renumbered <- factor(as.numeric(as.character(Idents(seurat_obj))) +1)
        #levels(labels_renumbered) <- label_names
        Idents(seurat_obj) <- labels_renumbered
    }
    if(batch.colname != 'plt') {
        seurat_obj@meta.data$plt <- seurat_obj@meta.data[[batch.colname]]
    }
    # assign batch ID of each cell as project ID defined upon Seurat obj initialization
    if(!'plt' %in% colnames(seurat_obj@meta.data)) {
        seurat_obj@meta.data$plt <- as.character(seurat_obj@meta.data$orig.ident)
    }
    seuratInfo(phemd_obj) <- seurat_obj
    
    return(phemd_obj)
}

#' @title Remove samples with too few cells
#' @description Removes samples from Phemd that have fewer cells than \code{min_sz}
#' @details Note: If used, this function must be called before (and not after) the \code{aggregateSamples} function is called
#' @param obj 'Phemd' object containing raw expression data and associated metadata
#' @param min_sz Minimum number of cells in each sample to be retained
#' @return 'Phemd' object containing raw multi-sample expression data and associated metadata (same as input minus removed samples)
#' @examples
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10) #removes samples with fewer than 10 cells
#'
removeTinySamples <- function(obj, min_sz=20) {
    stopifnot(is(obj,'Phemd'))
    stopifnot(mode(min_sz) == 'numeric')
    all_data <- rawExpn(obj)
    all_snames <- sNames(obj)
    all_sample_sz <- getSampleSizes(all_data)
    to_remove_idx <- which(all_sample_sz < min_sz)
    if(length(to_remove_idx) == 0) return(obj)
    
    to_remove_idx <- to_remove_idx[order(to_remove_idx, decreasing=TRUE)] #remove from end to front
    for(i in to_remove_idx) {
        print(sprintf('%s removed because only contains %d cells', all_snames[i], all_sample_sz[i]))
        all_data[[i]] <- NULL
    }
    all_snames <- all_snames[-to_remove_idx]
    
    obj@data <- all_data
    obj@snames <- all_snames
    validObject(obj)
    return(obj)
}

#' @title Aggregate expression data from all samples
#' @description Takes initial Phemd object and returns object with additional data frame in slot @@data_aggregate containing cells aggregated from all samples (to be used for further analyses e.g. Monocle 2 trajectory building / pseudotime mapping / cell clustering)
#' @details Subsamples cells as necessary based on \code{max_cells}. If subsampling is performed, an equal number of cells are subsampled from each sample
#' @param obj 'Phemd' object containing raw expression data and associated metadata
#' @param max_cells Maximum number of cells across all samples to be included in final matrix on which Monocle 2 will be run
#' @return Same as input 'Phemd' object with additional slot 'data_aggregate' containing aggregated expression data (num_markers x num_cells)
#' @examples
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#'
aggregateSamples <- function(obj, max_cells=12000) {
    stopifnot(is(obj, 'Phemd'))
    stopifnot(mode(max_cells) == 'numeric')
    
    all_data <- rawExpn(obj)
    nsample <- length(all_data)
    if(nsample == 0) return(obj)
    
    subsample_sz <- floor(max_cells/nsample)
    all_aggregate_data <- matrix(nrow=0,ncol=ncol(all_data[[1]]))
    all_subsample_idx <- list()
    subsample_bool = FALSE
    
    all_sample_sz <- getSampleSizes(all_data)
    if(sum(all_sample_sz) > max_cells) subsample_bool = TRUE
    
    for(i in seq_len(nsample)) {
        cur_data <- all_data[[i]]
        # take all cells unless total cells across all samples > max_cells
        if(subsample_bool) {
            cur_subsample_idx <- sample(seq_len(nrow(cur_data)), min(subsample_sz, nrow(cur_data)))
            all_subsample_idx[[i]] <- cur_subsample_idx
            all_aggregate_data <- rbind(all_aggregate_data, cur_data[cur_subsample_idx,])
        } else {
            all_aggregate_data <- rbind(all_aggregate_data, cur_data)
        }
    }
    all_aggregate_data <- t(all_aggregate_data) #rows = markers, cols = cells
    colnames(all_aggregate_data) <- seq_len(ncol(all_aggregate_data))
    rownames(all_aggregate_data) <- selectMarkers(obj)
    
    pooledCells(obj) <- as.matrix(all_aggregate_data)
    subsampledIdx(obj) <- all_subsample_idx
    subsampledBool(obj) <- subsample_bool
    return(obj)
}

#' @title Perform feature selection on aggregated data
#' @description Takes as input a Phemd object with aggregated data and returns updated object after performing feature selection on aggregated data
#' @details \code{aggregateSamples} needs to be called before running this function
#' @param obj 'Phemd' object containing aggregated data
#' @param selected_genes Vector containing names of genes to use for downstream analyses
#' @return Same as input 'Phemd' object after performing feature-selection based dimensionality reduction on aggregated expression data
#' @examples
#'
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_lg <- selectFeatures(my_phemdObj_lg, selected_genes=c('TP53',
#' 'EGFR', 'KRAS', 'FOXP3', 'LAG3'))
#'
selectFeatures <- function(obj, selected_genes) {
    if(isempty(pooledCells(obj))) stop('slot "data_aggregate" is empty; please call aggregateSamples() before running selectFeatures()')
    all_aggregate_data <- pooledCells(obj)
    all_genes <- selectMarkers(obj)
    selected_gene_map <- match(selected_genes, all_genes)
    #TODO: print genes in selected_genes that were unable to map to all_genes
    if(sum(!is.na(selected_gene_map)) == 0) {
        stop('None of the genes in "selected_genes" were found. Aborting feature selection.')
    }
    
    all_aggregate_data <- all_aggregate_data[selected_gene_map,]
    obj@data_aggregate <- all_aggregate_data #set slots manually due to validity constraints
    obj@markers <- all_genes[selected_gene_map]
    validObject(obj)
    return(obj)
}

#' @title Generate cell-state embedding
#' @description Takes as input a Phemd object with aggregated data and returns updated object containing cell-state embedding
#' @details \code{aggregateSamples} needs to be called before running this function.
#' @param obj 'Phemd' object containing aggregated data
#' @param cell_model Method to use to generate cell-state embedding. Currently supports "phate" and "monocle2". If using the Seurat to model the cell-state space, please identify cell subtypes as outlined in the Seurat software package and then use the \code{bindSeuratObj} function.
#' @param data_model Only relevant if cell_model = "monocle2". One of the following: 'negbinomial_sz', 'negbinomial', 'tobit', 'uninormal', 'gaussianff'. See "Family Function" table at the following link for more details on selecting the proper one. \url{http://cole-trapnell-lab.github.io/monocle-release/docs/#getting-started-with-monocle}
#' @param phate_ncluster Only relevant if cell_model = "phate". Number of cell state clusters to return when using PHATE
#' @param phate_cluster_seed Only relevant if cell_model = "phate". Seed to use when performing cell state clustering (optional)
#' @param ... Additional parameters to be passed to \code{reduceDimension} function for Monocle or \code{phate} function for PHATE
#' @return Same as input 'Phemd' object containing additional cell-state embedding object
#' @examples
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_lg <- embedCells(my_phemdObj_lg, cell_model='monocle2', data_model = 'gaussianff', sigma=0.02, maxIter=2)
embedCells <- function(obj, cell_model=c('monocle2', 'seurat', 'phate'), data_model = 'negbinomial_sz', phate_ncluster=8, phate_cluster_seed=NULL, ...) {
    extra_args <- list(...)
    cell_model <- match.arg(cell_model, c('monocle2','seurat', 'phate'))
    
    if(isempty(pooledCells(obj))) stop('slot "data_aggregate" is empty; please call aggregateSamples() before running embedCells()')
    mydata <- pooledCells(obj)
    if(is.null(mydata)) stop("Error: call 'aggregateSamples' function first ")
    
    if(cell_model == 'monocle2') {
        myFeatureData <- as.data.frame(selectMarkers(obj))
        fd <- new("AnnotatedDataFrame", data=myFeatureData)
        rownames(fd) <- selectMarkers(obj)
        
        if(is.null(data_model)) {
            print('Assuming data fit negative binomial pattern of expression...')
            data_model <- 'negbinomial_sz'
        }
        
        if(data_model == 'negbinomial_sz') {
            expression_fam_fn <- VGAM::negbinomial.size()
        } else if(data_model == 'negbinomial') {
            expression_fam_fn <- VGAM::negbinomial()
        } else if(data_model == 'tobit') {
            expression_fam_fn <- VGAM::tobit()
        } else if(data_model == 'uninormal') {
            expression_fam_fn <- VGAM::uninormal()
        } else if(data_model == 'gaussianff') {
            #expression_fam_fn <- VGAM::gaussianff()
            expression_fam_fn <- gaussianffLocal()
        } else {
            stop("Error: Invalid data_model specified")
        }
        
        # Helpful to use ncenter and sigma that's higher than default in reduceDimension for datasets w/ relatively more cells
        if(!('ncenter' %in% names(extra_args)) && ncol(mydata) > 3000) {
            extra_args['ncenter'] <- 750
            if(!('sigma' %in% names(extra_args))) extra_args['sigma'] <- 0.03
        }
        
        if(!('maxIter' %in% names(extra_args))) {
            extra_args['maxIter'] <- 12 #set maximum number of iterations to 12
        }
        
        if(!('max_components' %in% names(extra_args))) {
            extra_args['max_components'] <- 2 #set number of dimensionality-reduced components to 2
        }
        
        monocle_obj <- newCellDataSetUpdated(mydata,phenoData=NULL,featureData=fd,
                                      expressionFamily=expression_fam_fn)
        varLabels(featureData(monocle_obj)) <- 'gene_short_name' #random formatting requirement for monocle
        
        if(data_model == 'negbinomial_sz') {
            monocle_obj <- estimateSizeFactors(monocle_obj) #Only needed for negbinomial data; also note that with R 4.0 class(mymatrix) returns ["matrix", "array"] so isSparseMatrix doesn't return scalar and hence is broken
            monocle_obj <- estimateDispersions(monocle_obj)
        }
        if(data_model == 'gaussianff') {
            extra_args['norm_method'] <- 'none'
            extra_args['scaling'] <- 'FALSE'
        }
        
        rd_args <- c(list(cds=monocle_obj, reduction_method='DDRTree'),
                     extra_args[names(extra_args) %in% c("verbose", "ncenter", "norm_method", 'scaling', 'pseudo_expr', "initial_method", "maxIter", "sigma", "lambda", "param.gamma", "tol", "max_components")])
        monocle_obj_red <- do.call(reduceDimension, rd_args)
        
        monocleInfo(obj) <- monocle_obj_red
    } else if(cell_model == 'phate') {
        # Perform phate embedding and generate cell state labels
        rd_args <- c(list(data=t(mydata)),
                     extra_args)
        phate_obj <- do.call(phate, rd_args)
        state_labels <- cluster_phate(phate_obj, phate_ncluster, phate_cluster_seed)
        if(min(state_labels) <= 0) {
            # Ensure numeric cell state labels are 1-indexed
            state_labels <- state_labels - min(state_labels) + 1 
        }
        phate_obj$cellstate.labels <- state_labels
        class(phate_obj) <- 'list'
        phateInfo(obj) <- phate_obj
    } 
    return(obj)
}

#' @title Compute Monocle2 cell state and pseudotime assignments
#' @description Takes as input a Phemd object with Monocle2 object and returns updated object with Monocle2 object containing cell state and pseudotime assignments
#' @details Wrapper function for \code{orderCells} in Monocle 2 package. \code{embedCells} needs to be called before calling this function.
#' @param obj 'Phemd' object containing Monocle2 object initialized using embedCells
#' @param ... Additional parameters to be passed into \code{orderCells} function
#' @return Same as input 'Phemd' object with updated cell-state embedding object containing cell state assignments
#' @examples
#'
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_monocle <- embedCells(my_phemdObj_lg, cell_model='monocle2', data_model='gaussianff', sigma=0.02, maxIter=2)
#' my_phemdObj_monocle <- orderCellsMonocle(my_phemdObj_monocle)
orderCellsMonocle <- function(obj, ...) {
    monocle_obj <- monocleInfo(obj)
    if(ncol(monocle_obj) == 0) stop('slot "monocle_obj" is empty; please call embedCells() before running orderCellsMonocle()')
    
    extra_args <- list(...)
    oc_args <- c(list(cds=monocle_obj),
    extra_args[names(extra_args) %in% c("root_state", "reverse")])
    
    monocle_obj_ordered <- do.call(orderCellsUpdated, oc_args) #updated from Monocle2 to be compatible with R4.2
    monocleInfo(obj) <- monocle_obj_ordered
    return(obj)
}

#' @title Computes cell subtype abundances for each sample
#' @description Takes as input a Phemd object with all single-cell expression data of all single-cell samples in @@data slot and cell-state embedding generated by embedCells. Returns updated object with cell subtype frequencies of each sample that may be retrieved by the 'celltypeFreqs' accessor function.
#' @details \code{embedCells} (and \code{orderCellsMonocle} if using the Monocle2 embedding technique) needs to be called before calling this function.
#' @param obj 'Phemd' object containing single-cell expression data of all samples in @@data slot and cell-state embedding object generated and stored using the embedCells function.
#' @param verbose Boolean that determines whether progress (sequential processing of samples) should be printed. FALSE by default
#' @param cell_model Either "monocle2", "seurat", or "phate" depending on method used to model cell state space
#' @return 'Phemd' object with cell subtype frequencies of each sample that can be retrieved using the 'celltypeFreqs' accessor function
#' @examples
#'
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_monocle <- embedCells(my_phemdObj_lg, data_model = 'gaussianff', sigma=0.02, maxIter=2)
#' my_phemdObj_monocle <- orderCellsMonocle(my_phemdObj_monocle)
#' my_phemdObj_final <- clusterIndividualSamples(my_phemdObj_monocle)
#'
clusterIndividualSamples <- function(obj, verbose=FALSE, cell_model=c('monocle2', 'seurat', 'phate')) {
    stopifnot(is(obj,'Phemd'))
    all_data <- rawExpn(obj)
    cell_model <- match.arg(cell_model, c('monocle2','seurat', 'phate'))
    if(cell_model %in% c('monocle2', 'phate')) {
        if(cell_model == 'monocle2') {
            # Use Monocle2 embedding and clusters
            monocle_obj <- monocleInfo(obj)
            if(ncol(monocle_obj) == 0) stop('slot "monocle_obj" is empty; please call embedCells() and orderCellsMonocle() before calling this function')
            
            # Extract state labels from monocle data object
            labels <- pData(phenoData(monocle_obj))
            if(!('State' %in% names(labels))) stop('monocleInfo(obj) does not have cell state assignments; please call embedCells() and orderCellsMonocle() before calling this function')
            state_labels <- as.numeric(labels$State)
            # retrieve reference clusters
            ref_clusters <- retrieveRefClusters(obj, cell_model='monocle2', expn_type='raw')
            refcells_expn <- t(exprs(monocle_obj))
        } else {
            # Use PHATE embedding and clusters
            phate_obj <- phateInfo(obj)
            if(length(phate_obj) == 0) {
                stop('slot "phate_obj" is empty; please call embedCells() and clusterCellsPHATE() before calling this function')
            }
            if(!('cellstate.labels' %in% names(phate_obj))) {
                stop('phateInfo(obj) does not have cell state assignments; please call embedCells() and clusterCellsPHATE() before calling this function')
            }
            state_labels <- phate_obj$cellstate.labels
            # retrieve reference clusters
            ref_clusters <- retrieveRefClusters(obj, cell_model='phate', expn_type='raw')
            refcells_expn <- t(pooledCells(obj))
        }
        nclusters <- length(ref_clusters)
        cluster.ids <- names(ref_clusters)
        
        if(!subsampledBool(obj)) {
            ## subsampling not performed; all cells assigned to clusters as-is
            
            cluster_weights <- matrix(0, nrow=length(all_data), ncol = nclusters)
            
            start_idx <- 1
            for(i in seq_len(length(all_data))) {
                cur_sample_sz <- nrow(all_data[[i]])
                end_idx <- start_idx + cur_sample_sz - 1
                sample_labels <- state_labels[start_idx:end_idx] #cell subtype assignments for current sample
                cur_hist <- rep(0, nclusters)
                for(j in seq_len(nclusters)) {
                    cur_hist[j] <- sum(sample_labels == cluster.ids[j])
                }
                cur_hist <- cur_hist / sum(cur_hist)
                cluster_weights[i,] <- cur_hist
                start_idx <- end_idx + 1
            }
            colnames(cluster_weights) <- paste('C-', cluster.ids, sep='')
            celltypeFreqs(obj) <- cluster_weights
        } else {
            ## subsampling performed; need to assign cells to cluster of nearest cell in embedding
            refcluster_sizes <- rep(0, length(ref_clusters))
            counter1 <- 0
            for(i in seq_len(nclusters)) {
                refcluster_sizes[i] <- nrow(ref_clusters[[i]])
                counter1 <- counter1 + nrow(ref_clusters[[i]])
            }
            print(refcluster_sizes / counter1)
            
            cluster_weights <- matrix(0, nrow=length(all_data), ncol=nclusters)
            for(i in seq_len(length(all_data))) {
                cur_data <- all_data[[i]]
                cur_ncells <- nrow(cur_data)
                cur_hist <- rep(0, nclusters)
                
                if(verbose && i %% 10 == 0) {
                    print(sprintf('Processing sample number: %d', i))
                }
                
                # Use nearest-cell mapping instead of nearest-centroid mapping
                cur_cell_labels <- assignCellClusterNearestNode(cur_data,
                                                                refcells_expn,
                                                                state_labels,
                                                                cell_model=cell_model)
         
                for(j in seq_len(nclusters)) {
                    cur_hist[j] <- sum(cur_cell_labels == cluster.ids[j])
                }
                cur_hist <- cur_hist / sum(cur_hist)
                cluster_weights[i,] <- cur_hist
            }
            print(colMeans(cluster_weights))
            colnames(cluster_weights) <- paste('C-', cluster.ids, sep='')
            
            celltypeFreqs(obj) <- cluster_weights
        }
    } else if(cell_model == 'seurat') {
        seurat_obj <- seuratInfo(obj)
        # retrieve reference clusters for starting estimate of cluster sizes
        ref_clusters <- retrieveRefClusters(obj, cell_model='seurat',
        expn_type = 'raw')
        nclusters <- length(ref_clusters)
        ## subsampling performed; assign cells to same cluster as nearest cell
        # in embedding
        refcluster_sizes <- rep(0, length(ref_clusters))
        counter1 <- 0
        for(i in seq_len(nclusters)) {
            refcluster_sizes[i] <- nrow(ref_clusters[[i]])
            counter1 <- counter1 + nrow(ref_clusters[[i]])
        }
        print(refcluster_sizes / counter1)
        
        cluster_weights <- matrix(0, nrow=length(all_data), ncol = nclusters)
        sample_batches <- batchIDs(obj)
        for(i in seq_len(length(all_data))) {
            cur_data <- all_data[[i]]
            cur_plt <- sample_batches[i]
            if(verbose && i %% 10 == 0) {
                print(sprintf('Processing sample number: %d', i))
            }
            
            cur_hist <- rep(0, nclusters)
            state_labels <- as.numeric(as.character(Idents(seurat_obj)))
            names(state_labels) <- rownames(seurat_obj@meta.data)
            ref_data <- t(as.matrix(GetAssayData(seurat_obj, assay='RNA', 
                                                 slot='counts')))
            cell_idx_curplt <- which(seurat_obj@meta.data$plt == cur_plt)
            if(length(cell_idx_curplt) == 0) {
                stop(sprintf('Error: no cells in reference set match the experiment_id %s of sample %d', cur_plt, i))
            }
            ref_data <- ref_data[cell_idx_curplt,]
            state_labels <- state_labels[cell_idx_curplt]
            
            # Use nearest-cell mapping
            cur_cell_labels <- assignCellClusterNearestNode(cur_data,
                                                            ref_data,
                                                            state_labels,
                                                            cell_model=cell_model)
            
            for(j in seq_len(nclusters)) {
                cur_hist[j] <- sum(cur_cell_labels == j)
            }
            cur_hist <- cur_hist / sum(cur_hist);
            cluster_weights[i,] <- cur_hist
        }
        print(colMeans(cluster_weights))
        
        celltypeFreqs(obj) <- cluster_weights
    } else {
        stop('Error: cell_model must be either "monocle2", "seurat", or "phate"')
    }
    
    return(obj)
}


#' @title Computes ground distance matrix based on cell embedding
#' @description Takes as input a Phemd object containing cell-state embedding object. Returns updated object with ground distance matrix representing pairwise distances between distinct cell subtypes based on cell state embedding.
#' @details \code{embedCells} and \code{orderCellsMonocle} need to be called before calling this function. Requires 'igraph' package
#' @param obj 'Phemd' object containing cell-state embedding object
#' @param cell_model Method by which cell state was modeled (either "monocle2", "seurat", or "phate")
#' @param expn_type Data type to use to determine cell-type dissimilarities
#' @param ndim Number of embedding dimensions to be used for computing cell-type dissimilarity (optional)
#' @return Phemd object with ground distance matrix (to be used in EMD computation) in @@data_cluster_weights slot
#' @examples
#'
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_monocle <- embedCells(my_phemdObj_lg, data_model = 'gaussianff', sigma=0.02, maxIter=2)
#' my_phemdObj_monocle <- orderCellsMonocle(my_phemdObj_monocle)
#' my_phemdObj_final <- clusterIndividualSamples(my_phemdObj_monocle)
#' my_phemdObj_final <- generateGDM(my_phemdObj_final)
#'
generateGDM <- function(obj, cell_model=c('monocle2', 'seurat', 'phate'), expn_type='reduced', ndim=8) {
    stopifnot(is(obj,'Phemd'))
    
    cell_model <- match.arg(cell_model, c('monocle2','seurat', 'phate'))
    if(cell_model == 'monocle2') {
        monocle_obj <- monocleInfo(obj)
        # retrieve reference clusters
        ref_clusters <- retrieveRefClusters(obj, cell_model='monocle2', expn_type=expn_type)
        nclusters <- length(ref_clusters)
        
        # get graph underlying Monocle tree
        mst_graph <- monocle_obj@auxOrderingData[["DDRTree"]]$pr_graph_cell_proj_tree
        centroids <- identifyCentroids(ref_clusters)
        pseudotimes <- pData(phenoData(monocle_obj))$Pseudotime
        emd_dists <- matrix(0, nrow=nclusters, ncol=nclusters)
        for(i in seq_len(nclusters)) {
            for(j in seq_len(nclusters)) {
                if(i == j) next
                path_btwn_cells <- shortest_paths(mst_graph, centroids[[i]], centroids[[j]])$vpath[[1]] #cell1 and cell2 should be strings representing vertices in mst
                pseudotime_curpath <- pseudotimes[path_btwn_cells]
                pseudotime_dist <- abs(pseudotimes[as.numeric(centroids[[i]])] - min(pseudotime_curpath)) + abs(pseudotimes[as.numeric(centroids[[j]])] - min(pseudotime_curpath))
                emd_dists[i,j] <- pseudotime_dist
            }
        }
        GDM(obj) <- emd_dists
    } else if(cell_model %in% c('seurat', 'phate')) {
        ref_clusters <- retrieveRefClusters(obj, cell_model=cell_model, expn_type=expn_type, ndim=ndim)
        centroids <- getArithmeticCentroids(ref_clusters)
        GDM(obj) <- as.matrix(dist(centroids))
    } else {
        stop('Error: cell_model must be either "monocle2", "seurat", or "phate"')
    }
    return(obj)
}

#' @title Computes EMD distance matrix representing pairwise dissimilarity between samples
#' @description Takes as input a Phemd object with cell subtype relative frequencies for each sample in @@data_cluster_weights slot and ground distance matrix (representing cell subtype pairwise dissimilarity) in @@emd_dist_mat slot. Returns distance matrix representing pairwise dissimilarity between samples
#' @details Requires 'transport' and 'pracma' packages
#' @param obj 'Phemd' object containing cell subtype relative frequencies for each sample in @@data_cluster_weights slot and ground distance matrix (representing cell subtype dissimilarity) in @@emd_dist_mat slot
#' @return Distance matrix of dimension num_samples x num_samples representing pairwise dissimilarity between samples
#' @examples
#'
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_monocle <- embedCells(my_phemdObj_lg, data_model = 'gaussianff', sigma=0.02, maxIter=2)
#' my_phemdObj_monocle <- orderCellsMonocle(my_phemdObj_monocle)
#' my_phemdObj_final <- clusterIndividualSamples(my_phemdObj_monocle)
#' my_phemdObj_final <- generateGDM(my_phemdObj_final)
#' my_EMD_mat <- compareSamples(my_phemdObj_final)
#'
compareSamples <- function(obj) {
    stopifnot(is(obj,'Phemd'))
    cluster_weights <- celltypeFreqs(obj)
    emd_dists <- GDM(obj)
    # generate inhibitor distance matrix
    Y <- rep(0, (nrow(cluster_weights)-1)*nrow(cluster_weights)/2)
    counter <- 1
    for(i in seq_len(nrow(cluster_weights))){
        cur_f1_weights <- cluster_weights[i,]
        for(j in (i+1):nrow(cluster_weights)) {
            if(j > nrow(cluster_weights)) break #this doesn't automatically happen in R
            cur_f2_weights <- cluster_weights[j,]
            # Compute EMD
            flow <- transport(cur_f1_weights, cur_f2_weights, emd_dists,
            method='primaldual')
            curdist <- 0
            for(k in seq_len(nrow(flow))) {
                cur_penalty <- emd_dists[flow[k,1], flow[k,2]]
                curdist <- curdist+cur_penalty*flow[k,3]
            }
            Y[counter] <- curdist
            counter <- counter + 1
        }
    }
    Y_sq <- squareform(Y)
    return(Y_sq)
}

#' @title Performs community detection on sample-sample distance matrix to identify groups of similar samples 
#' @description Takes sample-sample distance matrix as input and returns group assignments for each sample
#' @details By default, uses 'kgs' (Kelley-Gardner-Sutcliffe) method for determining optimal number of groups. Alternatively, can take user-specified number of groups). Requires 'cluster' and 'maptree' packages.
#' @param distmat A distance matrix of dimension num_samples x num_samples representing pairwise dissimilarity between samples
#' @param distfun Method of partitioning network of samples (currently either 'hclust' or 'pam')
#' @param ncluster Optional parameter specifying total number of sample groups
#' @param method Optional parameter for hierarchical clustering (see "hclust" documentation)
#' @param ... Optional additional parameters to be passed to diffusionKmeans method
#' @return Vector containing group assignments for each sample (same order as row-order of distmat) based on user-specified partitioning method (e.g. hierarchical clustering)
#' @examples
#' 
#' my_phemdObj <- createDataObj(all_expn_data, all_genes, as.character(snames_data))
#' my_phemdObj_lg <- removeTinySamples(my_phemdObj, 10)
#' my_phemdObj_lg <- aggregateSamples(my_phemdObj_lg, max_cells=1000)
#' my_phemdObj_monocle <- embedCells(my_phemdObj_lg, cell_model = 'monocle2', data_model = 'gaussianff', sigma=0.02, maxIter=2)
#' my_phemdObj_monocle <- orderCellsMonocle(my_phemdObj_monocle)
#' my_phemdObj_final <- clusterIndividualSamples(my_phemdObj_monocle)
#' my_phemdObj_final <- generateGDM(my_phemdObj_final)
#' my_EMD_mat <- compareSamples(my_phemdObj_final)
#' cluster_assignments <- groupSamples(my_EMD_mat, distfun = 'hclust', ncluster=4)
#' 
groupSamples <- function(distmat, distfun = 'hclust', ncluster=NULL, method='complete', ...) {
    ## Clustering on distance matrix
    if(nrow(distmat) != ncol(distmat)) {
        stop('Error: distmat must be a square distance matrix of dimension num_samples x num_samples')
    }
    if(distfun == 'hclust') {
        cluster_results <- hclust(as.dist(distmat), method=method)
        if(is.null(ncluster)) {
            # kgs method for determining optimal number of clusters
            op_k <- kgs(cluster_results, as.dist(distmat), maxclust = 15)
            ncluster <- op_k[which(op_k == min(op_k))]
        }
        cluster_assignments <- cutree(cluster_results, k=ncluster)
    } else if(distfun == 'pam') {
        if(is.null(ncluster)) ncluster <- 4
        cluster_results <- pam(distmat, ncluster, diss=TRUE)
        cluster_assignments <- cluster_results$clustering
    } else {
        stop("Error: Please specify distfun as either 'hclust' or 'pam'")
    }
    return(cluster_assignments)
}
KrishnaswamyLab/phemd documentation built on Oct. 2, 2024, 5:10 a.m.