Description Usage Arguments Value Negative, non-positive, and saturated values Missing values Weighted normalization Author(s) See Also Examples
Within-slide intensity-dependent normalization in (A,M). It normalizes pairs of channels by estimating a smooth log-ratio intensity-dependent curve.
Because of they are so well known by their de facto names, the methods
normalizeLowess(...)
and normalizeLoess(...)
are aliases
for normalizeCurveFit(..., method="lowess")
and
normalizeCurveFit(..., method="loess")
, respectively.
1 2 | ## S3 method for class 'RGData'
normalizeCurveFit(this, slides=NULL, groupBy=NULL, ...)
|
slides |
The slides which should be included in the calculations.
If |
groupBy |
|
... |
Other arguments, such as |
Returns itself invisibly.
Non-positive values are set to not-a-number (NaN
).
Data points that are saturated in one or more channels are not used
to estimate the normalization function, but they are normalized.
The estimation of the affine normalization function will be made based
on only complete non-saturated observations, i.e. observations that
contains no NA
values nor saturated values as defined by satSignal
.
Each data point can be assigned a weight in [0,1] specifying how much it should affect the fitting of the curve-fit normalization function. Note that here a data point is here considered to be the pair of values in the two channels to be normalized. For instance, for two-channel data, a data point is the pair (R,G).
Regardless of weights, all data points are normalized based on the fitted normalization function.
Weights can be set using *setProbeWeights()
.
If weights are specified, they will be used.
Henrik Bengtsson (http://www.braju.com/R/)
Internally, the light-weight function
normalizeCurveFit.matrix
is used.
For more information see RGData
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# First some utilities functions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
plotPairwiseScans <- function(rg, channel, ...) {
pair <- NULL;
for (ii in 1:(nbrOfSlides(rg)-1)) {
for (jj in (ii+1):nbrOfSlides(rg)) {
pair <- cbind(pair, c(ii,jj));
}
}
opar <- par(mar=c(5,5,3,1));
xlab <- substitute(y[channel]^{(v)}, list=list(channel=channel));
ylab <- substitute(y[channel]^{(w)}, list=list(channel=channel));
plot(NA, xlab=xlab, ylab=ylab, ...);
box(lwd=2, col=switch(channel, "R"="red", "G"="green"));
colors <- 1:ncol(pair)+3;
for (kk in 1:ncol(pair)) {
s <- pair[1,kk];
t <- pair[2,kk];
yv <- rg[[channel]][,s];
yw <- rg[[channel]][,t];
ok <- (yv > 0 & yw > 0 & is.finite(yv) & is.finite(yw));
mc <- log((yv/yw)[ok], base=2);
ac <- log((yv*yw)[ok], base=2)/2;
points(ac,mc, pch=".", col=colors[kk]);
}
# Add a legend
names <- getSlideName(rg);
pairNames <- apply(pair, MARGIN=2, FUN=function(x) paste(names[x], collapse=","));
pairNames <- paste("(", pairNames, ")", sep="");
usr <- par("usr")
legend(x=usr[2],y=usr[3], legend=pairNames, fill=colors, xjust=1, yjust=0, cex=0.7);
par(opar);
}
plotPairDensities <- function(rg, xlim=c(-2,18), ylim=c(0,0.8), ...) {
colors <- seq(rg)+3;
opar <- par(mar=c(5,5,3,1));
xlab <- expression(log[2](y[c]));
plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab="density", ...);
for (ch in c("R", "G")) {
col <- switch(ch, "R"="red", "G"="green");
for (slide in seq(rg)) {
x <- rg[[ch]][,slide];
line <- density(log(x[is.finite(x) & x > 0], base=2));
lines(line, col=col, lwd=4);
lines(line, col=colors[slide], lwd=1);
}
}
# Add a legend
names <- getSlideName(rg);
if (!is.null(names)) {
usr <- par("usr")
legend(x=usr[2],y=usr[4], legend=names, fill=colors, xjust=1, yjust=1, cex=0.7);
}
par(opar);
}
# Draw the (R,G) grid of the (fitted) affine model
drawRGGrid <- function(maxSignal=16, by=1, drawCurve=TRUE, highlightLog1=FALSE, afit=NULL, aR=NULL, aG=NULL, b=NULL) {
x <- seq(-2*maxSignal,maxSignal, by=by)
# The grid ticks on the non-logarithmic scale and shifted -1.
X <- 2^x
# The input (R,G) grid.
R <- matrix(X, nrow=length(X), ncol=length(X))
G <- t(R)
if (!is.null(afit)) {
if (is.null(aR))
aR <- afit$a[1];
if (is.null(aG))
aG <- afit$a[2];
if (is.null(b))
b <- max(afit$b[-1]);
}
if (!is.null(aR) & !is.null(aG) & !is.null(b)) {
R <- aR + R
G <- aG + b*G
}
r <- log(R, base=2)
g <- log(G, base=2)
m <- r-g
a <- (r+g)/2
drawGrid(a,m, col="gray");
if (highlightLog1) {
z <- which(x == 0);
col <- c("lightblue", "gray");
lwd <- c(2,1);
for (kk in 1:2) {
lines(a[z,],m[z,], col=col[kk], lwd=lwd[kk]);
lines(a[,z],m[,z], col=col[kk], lwd=lwd[kk]);
}
}
if (drawCurve) {
lines(diag(a), diag(m), col="blue", lty=4, lwd=2);
}
} # drawRGGrid()
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Main example code
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# One array was scanned four times at four different PMT settings.
rg <- RGData$read("PMT-RGData.dat", path=system.file("data-ex", package="aroma.light"));
setLayout(rg, Layout(4,4,17,17)); # Not really necessary!
setSlideName(rg, c("500V","600V","700V","800V"));
# Reorder the slides in scan order
keepSlides(rg, c("800V","500V","600V","700V"));
# Since scan "500V" seems to be an outlier, exclude it!
removeSlides(rg, slide="500V")
rg0 <- clone(rg);
# Calibrate using x <- (y-a)/b. A better alternative is to projecting the
# fitted line onto (1,1,...,1), but in this example we want to show that
# the scan after translation and rescaling are very similar, but with noise.
fit <- calibrateMultiscan(rg, project=FALSE);
avg <- median
R <- apply(rg$R, MARGIN=1, FUN=avg, na.rm=TRUE)
G <- apply(rg$G, MARGIN=1, FUN=avg, na.rm=TRUE)
R <- R / 8; G <- G/8;
rg <- RGData(R=R,G=G,layout=getLayout(rg))
rm(R,G)
# Since we used project=TRUE all scans are identical now.
keepSlides(rg, slide=1)
Device$set(2, height="108%");
subplots(9, nrow=3);
# Plot such that there is a right angle between the log(R) and log(G) axes.
Alim <- c(-2,18)
Mlim <- c(-1,1)*abs(diff(Alim))
ma <- as.MAData(rg);
plot(ma, xlim=Alim, ylim=Mlim, main="multiscan calibrated");
# Curve-fit using splines is much faster than using loess and give
# basically the same estimate.
fit <- normalizeCurveFit(rg, method="spline")
ma <- as.MAData(rg);
plot(ma, xlim=Alim, ylim=Mlim, main="calibrated + normalized");
drawRGGrid(maxSignal=Alim[2])
plotPairDensities(rg, ylim=c(0,0.4), main="calibrated + normalized");
rg <- clone(rg0)
keepSlides(rg, slide="600V")
ma <- as.MAData(rg);
pmt <- paste("PMT", getSlideNames(ma));
plot(ma, xlim=Alim, ylim=Mlim, main=pmt);
cat("Signals (", pmt, ") before normalization:\n", sep="");
print(summary(rg))
fit <- normalizeCurveFit(rg, method="spline")
cat("Signals (", pmt, ") after normalization:\n", sep="");
print(summary(rg))
cat("based on the estimates:\n");
str(fit)
ma <- as.MAData(rg);
plot(ma, xlim=Alim, ylim=Mlim, main=paste(pmt, "normalized"));
drawRGGrid(maxSignal=Alim[2])
plotPairDensities(rg, ylim=c(0,0.4), main=paste(pmt, "normalized"));
rg <- clone(rg0)
ma <- as.MAData(rg);
plot(NA, xlim=Alim, ylim=Mlim, main="All scans");
for (kk in seq(ma))
points(ma, slide=kk, col=kk+1, pch=".");
cat("Signals before normalization:\n", sep="");
print(summary(rg))
fit <- normalizeCurveFit(rg, method="spline")
cat("Signals after normalization:\n", sep="");
print(summary(rg))
cat("based on the estimates:\n");
str(fit)
# To give evidence that all signals now contains the same bias
# and that the relative scale between all scans and all channels
# is one we rescale all signals by the same factor. The only affect
# this will have on the M vs A plot is that the data is shifted
# along the A dimension. Note that there is no rescaling the
# log-ratios!
#scale <- 1/2^5; # Shift such that A <- A - 5;
#for (ch in c("R", "G"))
# rg[[ch]] <- scale*rg[[ch]];
ma <- as.MAData(rg);
plot(NA, xlim=Alim, ylim=Mlim, main="All scans normalized");
for (kk in seq(ma))
points(ma, slide=kk, col=kk+1, pch=".");
drawRGGrid(maxSignal=Alim[2])
plotPairDensities(rg, ylim=c(0,0.4), main="All scans normalized");
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.