Description Usage Arguments Details Value Weighted calibration Author(s) References See Also Examples
Calibrates multiple re-scanned images based on an affine model.
Each channel is calibrated seperately.
1 2 | ## S3 method for class 'RGData'
calibrateMultiscan(this, slides=NULL, channels=NULL, groupBy=NULL, ...)
|
slides |
Slides to be used in the fit and that are to be
calibrated. If |
channels |
|
groupBy |
|
... |
Additional arguments accepted by
|
Fitting is done by iterated re-weighted principal component analysis (IWPCA).
Returns a list
containing one element for each calibrated channel.
Each channel element contains parameter estimates either directly
as global estimates or as a list
consisting estimates for each
group (as defined groupBy
).
Each data point can be assigned a weight in [0,1] specifying how much
it should affect the fitting of the calibration function.
Note that here a data point is here considered to be the vector
of values from all scans ("slides").
Regardless of weights, all data points are calibrated based on the fitted calibrated function.
Data-point weights are obtained from probe weights, if given.
Weights can be set using *setProbeWeights()
.
If weights are specified, they will be used.
Currently it is not possible to set different in different channels.
Henrik Bengtsson (http://www.braju.com/R/)
[1] H. Bengtsson, J. Vallon-Christersson and G. Jönsson, Calibration and assessment of channel-specific biases in microarray data with extended dynamical range, BMC Bioinformatics, 5:177, 2004.
calibrateMultiscan.matrix
.
normalizeAffine.RGData
().
For more information see RGData
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# First some utilities functions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
plotPairwiseScans <- function(rg, channel, ...) {
pair <- NULL;
for (ii in 1:(nbrOfSlides(rg)-1)) {
for (jj in (ii+1):nbrOfSlides(rg)) {
pair <- cbind(pair, c(ii,jj));
}
}
opar <- par(mar=c(5,5,3,1));
xlab <- substitute(y[channel]^{(v)}, list=list(channel=channel));
ylab <- substitute(y[channel]^{(w)}, list=list(channel=channel));
plot(NA, xlab=xlab, ylab=ylab, ...);
box(lwd=2, col=switch(channel, "R"="red", "G"="green"));
colors <- 1:ncol(pair)+3;
for (kk in 1:ncol(pair)) {
s <- pair[1,kk];
t <- pair[2,kk];
yv <- rg[[channel]][,s];
yw <- rg[[channel]][,t];
ok <- (yv > 0 & yw > 0 & is.finite(yv) & is.finite(yw));
mc <- log((yv/yw)[ok], base=2);
ac <- log((yv*yw)[ok], base=2)/2;
points(ac,mc, pch=".", col=colors[kk]);
}
# Add a legend
names <- getSlideName(rg);
pairNames <- apply(pair, MARGIN=2, FUN=function(x) paste(names[x], collapse=","));
pairNames <- paste("(", pairNames, ")", sep="");
usr <- par("usr")
legend(x=usr[2],y=usr[3], legend=pairNames, fill=colors, xjust=1, yjust=0, cex=0.7);
par(opar);
}
plotPairDensities <- function(rg, xlim=c(-2,18), ylim=c(0,0.8), ...) {
colors <- seq(rg)+3;
opar <- par(mar=c(5,5,3,1));
xlab <- expression(log[2](y[c]));
plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab="density", ...);
for (ch in c("R", "G")) {
col <- switch(ch, "R"="red", "G"="green");
for (slide in seq(rg)) {
x <- rg[[ch]][,slide];
line <- density(log(x[is.finite(x) & x > 0], base=2));
lines(line, col=col, lwd=4);
lines(line, col=colors[slide], lwd=1);
}
}
# Add a legend
names <- getSlideName(rg);
if (!is.null(names)) {
usr <- par("usr")
legend(x=usr[2],y=usr[4], legend=names, fill=colors, xjust=1, yjust=1, cex=0.7);
}
par(opar);
}
# Draw the (R,G) grid of the (fitted) affine model
drawRGGrid <- function(maxSignal=16, by=1, drawCurve=TRUE, highlightLog1=FALSE, afit=NULL, aR=NULL, aG=NULL, b=NULL) {
x <- seq(-2*maxSignal,maxSignal, by=by)
# The grid ticks on the non-logarithmic scale and shifted -1.
X <- 2^x
# The input (R,G) grid.
R <- matrix(X, nrow=length(X), ncol=length(X))
G <- t(R)
if (!is.null(afit)) {
if (is.null(aR))
aR <- afit$a[1];
if (is.null(aG))
aG <- afit$a[2];
if (is.null(b))
b <- max(afit$b[-1]);
}
if (!is.null(aR) & !is.null(aG) & !is.null(b)) {
R <- aR + R
G <- aG + b*G
}
r <- log(R, base=2)
g <- log(G, base=2)
m <- r-g
a <- (r+g)/2
drawGrid(a,m, col="gray");
if (highlightLog1) {
z <- which(x == 0);
col <- c("lightblue", "gray");
lwd <- c(2,1);
for (kk in 1:2) {
lines(a[z,],m[z,], col=col[kk], lwd=lwd[kk]);
lines(a[,z],m[,z], col=col[kk], lwd=lwd[kk]);
}
}
if (drawCurve) {
lines(diag(a), diag(m), col="blue", lty=4, lwd=2);
}
} # drawRGGrid()
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Main example code
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# One array was scanned four times at four different PMT settings.
rg0 <- RGData$read("PMT-RGData.dat", path=system.file("data-ex", package="aroma.light"));
setLayout(rg0, Layout(4,4,17,17)); # Not really necessary!
setSlideName(rg0, c("500V","600V","700V","800V"));
# Reorder the slides (to make the M vs A plot more clear!)
keepSlides(rg0, c("800V","500V","600V","700V"));
for (ch in c("R", "G")) {
signalWeights <- SignalWeights$fromSaturatedSignals(rg0[[ch]]);
setSignalWeights(rg0, channel=ch, weights=signalWeights);
rm(signalWeights);
}
# Calibrate using x <- (y-a)/b. For illustration purposed, we want to
# keep all scans so we do not calculate the average scan here.
rgC <- clone(rg0);
fit <- calibrateMultiscan(rgC, average=NULL, project=FALSE);
str(fit);
Device$set(2, height="108%");
subplots(9);
Alim <- c(0,20);
Mlim <- c(-1,1)*abs(diff(range(Alim)));
# Same scale on calibrated and non-calibrated data
xlim <- c(4,18); ylim <- c(-1,1)*3.5;
for (ch in c("R", "G")) {
plotPairwiseScans(rg0, channel=ch, xlim=Alim, ylim=Mlim, main="non-calibrated");
drawRGGrid(afit=fit[[ch]]);
}
plotPairDensities(rg0, main="non-calibrated");
# It is clear from the calibrated plots that the 500V scan is special.
# By visual inspection of the density plots the following manual
# correction makes their densities "nicer". Uncomment to test.
# rg$R[,1] <- rg$R[,1] - 94; rg$G[,1] <- rg$G[,1] - 54;
for (ch in c("R", "G")) {
plotPairwiseScans(rgC, channel=ch, xlim=Alim, ylim=Mlim, main="calibrated");
drawRGGrid(maxSignal=Alim[2]);
}
plotPairDensities(rgC, main="calibrated");
# Now when we have shown the effect of multiscan calibration, we
# calibrate and calculate the median scan as done in practice.
rgCAvg <- clone(rg0);
calibrateMultiscan(rgCAvg);
setSlideNames(rgCAvg, "calib");
# Put both raw and average calibrated data into the same MAData object
rgN <- clone(rgCAvg);
fit <- normalizeAffine(rgN);
# Try also this to see the effect of lowess normalization
maN <- as.MAData(rgN); normalizeWithinSlide(maN, method="l"); rgN <- as.RGData(maN);
rg <- rgN;
append(rg, rgCAvg);
setSlideNames(rg, c("normalized", "raw"));
rm(rgN,rgCAvg);
# Plot M vs A for raw data. From the overlaid grid (according to the
# estimated affine parameters), one can see that the normalization
# method indeed allows some signals to fall out of the positive
# quadrant, that is, the data points outside the grid will become
# negative values (and therefore not visible in the next (A,M)-plot).
ma <- as.MAData(rg);
Alim <- c(0,ceiling(max(ma$A,na.rm=TRUE)));
Mlim <- c(-1,1)*abs(diff(range(Alim)));
plot(ma, slide="raw", xlim=Alim, ylim=Mlim);
drawRGGrid(afit=fit[[1]], drawCurve=TRUE);
plot(ma, slide="normalized", xlim=Alim, ylim=Mlim);
drawRGGrid(maxSignal=Alim[2]);
# Plot M vs M for normalized and raw data. Stratify on observations
# close to A = [0.0,0.5,1.0,...,16.0] to better see the intenstity
# dependency of the log-ratio bias.
ma <- as.MAData(rg);
isCloseTo <- function(x, value=0, dx=0.05) (x > value-dx & x < value+dx);
incl <- rep(NA, nbrOfSpots(rg));
for (aa in seq(0,16, by=0.5))
incl <- incl | isCloseTo(ma$A[,2], value=aa, dx=0.05);
# Shift the plot to maximize resolution, but keep aspect ratios.
Mlim <- c(-7,4);
plotMvsM(ma, slides=1:2, pch=176, cex=0.5, include=incl, xlim=Mlim);
abline(a=0,b=1, col="lightblue");
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.