ParallelFilter: The ParallelFilter class

Description Usage Arguments Fields and Methods Author(s) See Also Examples

Description

Package: aroma
Class ParallelFilter

Object
~~|
~~+--Filter
~~~~~~~|
~~~~~~~+--ParallelFilter

Directly known subclasses:
AndFilter, OrFilter

public abstract static class ParallelFilter
extends Filter

A ParallelFilter is a filter that passes through indices from several inputs given some criteria. Examples of parallel filters are the AndFilter and the OrFilter, which provides the logical operators AND and OR, respectively.

Usage

1

Arguments

...

The input Filters to be connected to.

cex

The scale factor of symbols that this filter highlights.

col

The color of symbols that this filter highlights.

pch

The plot symbols that this filter highlights.

visible

If TRUE, the data points filtered out by this filter will be highlighted, otherwise not.

Fields and Methods

Fields

filters The input filters.

Methods:

changeInput Replaces input filters with other ones.
getInput Gets the input filters.

Methods inherited from Filter:
as.character, changeInput, getIndex, getInput, getParameter, getVisible, highlight, setParameter, setVisible, text

Methods inherited from Object:
$, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clone, detach, equals, extend, finalize, gc, getEnvironment, getFields, getInstanciationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, save

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

See Also

See also the SerialFilter class. For logical filters see AndFilter, OrFilter, and NotFilter. For data filters see MFilter, AFilter, TFilter and SEFilter.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
   SMA$loadData("mouse.data")
   layout <- Layout$read("MouseArray.Layout.dat", path=system.file("data-ex", package="aroma"))
   raw <- RawData(mouse.data, layout=layout)

   ma <- getSignal(raw)
   normalizeWithinSlide(ma, "s")
   normalizeAcrossSlides(ma)

   tma <- as.TMAData(ma)

   fM  <- MFilter(tma, top=0.05, col="red")
   fT  <- TFilter(tma, top=0.05, col="blue")
   fNotSE <- SEFilter(tma, range=c(-Inf,0.02), col="yellow")
   fSE <- NotFilter(fNotSE, visible=FALSE)
   myFilter <- AndFilter(fM, fT, fSE, col="purple")

   plot(tma, "TvsSE");
   highlight(myFilter, recursive=TRUE);

HenrikBengtsson/aroma documentation built on May 7, 2019, 12:56 a.m.