# ==============================================================================
# colors for 30 ConensusClusterPlus metaclusters
# ------------------------------------------------------------------------------
.cluster_cols <- c(
"#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72",
"#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3",
"#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D",
"#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999",
"#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000",
"#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00")
# ==============================================================================
# helper to get & check features for plotting; should be either
# - a character string specifiying a subset of features to include
# - one of "type", "state", "none" if 'rowData(x)$marker_class' exists
# ------------------------------------------------------------------------------
.get_features <- function(x, fs) {
if (is.null(fs)) {
fs <- rownames(x)
} else {
stopifnot(is.character(fs))
foo <- tryCatch(
error = function(e) e,
match.arg(fs, c("type", "state", "none")))
if (!inherits(foo, "error")) {
fs <- foo
stopifnot(!is.null(marker_classes(x)))
fs <- rownames(x)[marker_classes(x) == fs]
if (length(fs) == 0)
stop("No features matched the specified marker class.")
} else stopifnot(fs %in% rownames(x))
}
return(fs)
}
.get_shapes <- function(x, shape_by) {
if (is.null(shape_by))
return(NULL)
# default shapes
shapes <- c(16, 17, 15, 3, 7, 8)
n <- nlevels(x[[shape_by]])
if (n > 18) {
message(
"At most 17 shapes are currently supported but ",
n, " are required; setting 'shape_by' to NULL.")
return(NULL)
} else if (n > 6) {
more_shapes <- setdiff(c(seq_len(16)-1, 18), shapes)
shapes <- c(shapes, more_shapes[seq_len(n-length(shapes))])
} else shapes <- shapes[seq_len(n)]
return(shapes)
}
# ==============================================================================
# scale expression to values b/w 0 and 1 using
# low (1%) and high (99%) quantiles as boundaries
# ------------------------------------------------------------------------------
#' @importFrom matrixStats rowQuantiles
#' @importFrom methods is
.scale_exprs <- function(x, margin = 1, q = 0.01) {
if (!is(x, "matrix")) x <- as.matrix(x)
qs <- c(rowQuantiles, colQuantiles)[[margin]]
qs <- qs(x, probs = c(q, 1-q))
qs <- matrix(qs, ncol = 2)
x <- switch(margin,
"1" = (x - qs[, 1]) / (qs[, 2] - qs[, 1]),
"2" = t((t(x) - qs[, 1]) / (qs[, 2] - qs[, 1])))
x[x < 0 | is.na(x)] <- 0
x[x > 1] <- 1
return(x)
}
# ==============================================================================
# calculate non-redundancy score (NRS) for ea. feature & sample
# ------------------------------------------------------------------------------
#' @importFrom Matrix rowSums
#' @importFrom stats prcomp
.nrs <- function(u, n=3) {
if (ncol(u) < n) return(NULL)
pc <- prcomp(t(u), center=TRUE, scale.=FALSE)
rowSums(abs(pc$rotation[, seq_len(n)])
*outer(rep(1, nrow(u)), pc$sdev[seq_len(n)]^2))
}
# ==============================================================================
# retrieve experimental design table from current object
# ------------------------------------------------------------------------------
#' @importFrom methods is
#' @importFrom SummarizedExperiment colData
.get_ei <- function(x) {
if (is(x, "SingleCellExperiment"))
x <- colData(x)
# get sample identifiers
ids <- levels(droplevels(factor(x$sample_id)))
# get uniquely mappable metadata
j <- setdiff(names(x), "cluster_id")
keep <- vapply(j, \(.)
!is.numeric(x[[.]]),
logical(1))
j <- j[keep]
keep <- vapply(j, \(.) {
ns <- table(x$sample_id, x[[.]])
all(rowSums(ns != 0) == 1)
}, logical(1))
j <- j[keep]
i <- match(ids, x$sample_id)
ncs <- table(x$sample_id)
data.frame(x[i, j],
row.names=NULL,
n_cells=as.integer(ncs))
}
# ==============================================================================
# wrapper for ComplexHeatmap annotations
# ------------------------------------------------------------------------------
#' @importFrom ComplexHeatmap rowAnnotation
#' @importFrom dplyr mutate_all
#' @importFrom grDevices colorRampPalette
#' @importFrom grid gpar unit
.anno_clusters <- function(x, k, m, k_pal, m_pal) {
kids <- levels(x$cluster_id)
nk <- length(kids)
if (nk > length(k_pal))
k_pal <- colorRampPalette(k_pal)(nk)
k_pal <- k_pal[seq_len(nk)]
names(k_pal) <- kids
df <- data.frame(cluster_id = kids)
col <- list(cluster_id = k_pal)
if (!is.null(m)) {
i <- match(kids, cluster_codes(x)[, k])
mids <- droplevels(cluster_codes(x)[, m][i])
nm <- nlevels(mids)
if (nm > length(m_pal))
m_pal <- colorRampPalette(m_pal)(nm)
m_pal <- m_pal[seq_len(nm)]
names(m_pal) <- levels(mids)
df$merging_id <- mids
col$merging_id <- m_pal
}
df <- mutate_all(df, function(u) factor(u, unique(u)))
rowAnnotation(df = df, col = col, gp = gpar(col = "white"))
}
#' @importFrom ComplexHeatmap HeatmapAnnotation
#' @importFrom dplyr mutate_all select_if summarize_all %>%
#' @importFrom grid gpar unit
#' @importFrom grDevices colorRampPalette
#' @importFrom RColorBrewer brewer.pal
#' @importFrom SummarizedExperiment colData
.anno_factors <- function(x, ids, which, type = c("row", "column")) {
type <- match.arg(type)
# get non-numeric cell metadata variables
cd <- colData(x)
df <- data.frame(cd, check.names = FALSE)
df <- select_if(df, ~!is.numeric(.))
df <- mutate_all(df, ~droplevels(factor(.x)))
# store sample matching
m <- match(ids, df$sample_id)
# get number of matches per variable
ns <- split(df, df$sample_id) %>%
lapply(mutate_all, droplevels) %>%
lapply(summarize_all, nlevels) %>%
do.call(what = "rbind")
# keep only uniquely mapable factors included in 'which'
keep <- names(which(colMeans(ns) == 1))
keep <- setdiff(keep, c("sample_id", "cluster_id"))
if (is.character(which))
keep <- intersect(keep, which)
if (length(keep) == 0) return(NULL)
df <- df[m, keep, drop = FALSE]
# get list of colors for each annotation
lvls <- lapply(as.list(df), levels)
nlvls <- vapply(lvls, length, numeric(1))
pal <- brewer.pal(8, "Set3")[-2]
if (any(nlvls > length(pal)))
pal <- colorRampPalette(pal)(max(nlvls))
names(is) <- is <- colnames(df)
cols <- lapply(is, function(i) {
u <- pal[seq_len(nlvls[i])]
names(u) <- lvls[[i]]; u
})
HeatmapAnnotation(which = type, df = df,
col = cols, gp = gpar(col = "white"))
}
.anno_counts <- function(x, perc) {
ns <- table(x)
fq <- round(ns/sum(ns)*100, 2)
if (perc) {
txt <- sprintf("%s%%(%s)", fq, names(fq))
foo <- row_anno_text(txt,
just = "center",
gp = gpar(fontsize = 8),
location = unit(0.5, "npc"))
} else foo <- NULL
rowAnnotation(
"n_cells" = row_anno_barplot(
x = as.matrix(ns), width = unit(2, "cm"),
gp = gpar(fill = "grey", col = "white"),
border = FALSE, axis = TRUE, bar_width = 0.8),
"foo" = foo)
}
# ==============================================================================
# change in area under CDF curve
# ------------------------------------------------------------------------------
.triangle <- function(m) {
n <- ncol(m)
nm <- matrix(0, ncol=n, nrow=n)
fm <- m
nm[upper.tri(nm)] <- m[upper.tri(m)]
fm <- t(nm) + nm
diag(fm) <- diag(m)
nm <- fm
nm[upper.tri(nm)] <- NA
diag(nm) <- NA
m[lower.tri(nm)]
}
.plot_delta_area <- function(mc) {
# empirical CDF distribution
maxK <- length(mc)
v <- lapply(mc[seq_len(maxK)[-1]], function(x) .triangle(x$ml))
h <- lapply(v, function(x) {
h <- graphics::hist(x, breaks=seq(0, 1, .01), plot=FALSE)
h$counts <- cumsum(h$counts) / sum(h$counts)
return(h)
})
# calculate area under CDF curve, by histogram method &
# calculate proportional increase relative to prior k
areaK <- vapply(h, function(x) cumsum(x$counts * .01)[100], numeric(1))
deltaK <- c(areaK[1], diff(areaK) / areaK[seq_len(maxK-2)])
df <- data.frame(k=seq_len(maxK)[-1], y=deltaK)
y_max <- ceiling(max(df$y)*2)/2
ggplot(df, aes(.data$k, .data$y)) +
theme_classic() + geom_line(color="steelblue", lty=2) +
geom_point(size=2.5, color="navy") + coord_fixed(4) +
scale_x_continuous(breaks=seq(2, 20, 2), expand=c(0,.5)) +
scale_y_continuous(limits=c(0, y_max), expand=c(0,.125),
breaks=function(x) seq(x[1]+.125, x[2], .5)) +
ylab("Relative change\nin area under CDF curve") +
theme(plot.title=element_text(face="bold"),
axis.text=element_text(color="black"),
panel.grid.major=element_line(color="grey", linewidth=.2))
}
# ==============================================================================
# wrapper for Z-score normalization
# ------------------------------------------------------------------------------
.z_normalize <- function(es, th=2.5) {
es_n <- apply(es, 1, function(x) {
sd <- stats::sd(x, na.rm=TRUE)
x <- x - mean(x, na.rm=TRUE)
if (sd != 0) x <- x / sd
x[x > th] <- th
x[x < -th] <- -th
return(x)
})
return(t(es_n))
}
# ==============================================================================
# split cell indices by cell metadata factor(s)
# - x: a SCE with rows = cells, columns = features
# - by: colData columns specifying factor(s) to aggregate by
# ------------------------------------------------------------------------------
#' @importFrom data.table data.table
#' @importFrom SummarizedExperiment colData
#' @importFrom purrr map_depth
.split_cells <- function(x, by) {
stopifnot(is.character(by), by %in% colnames(colData(x)))
cd <- data.frame(colData(x))
dt <- data.table(cd, i = seq_len(ncol(x)))
dt_split <- split(dt, by = by, sorted = TRUE, flatten = FALSE)
map_depth(dt_split, length(by), "i")
}
# ==============================================================================
# aggregation of single-cell to pseudobulk data;
# e.g., median expression by cluster- or cluster-sample
# - x: a SCE with rows = cells, columns = features
# - by: colData columns specifying factor(s) to aggregate by
# - fun: aggregation function specifying the
# summary statistic, e.g., sum, mean, median
# ------------------------------------------------------------------------------
#' @importFrom dplyr bind_rows
#' @importFrom Matrix rowMeans rowSums
#' @importFrom matrixStats rowMedians
#' @importFrom purrr map_depth
#' @importFrom SummarizedExperiment assay
.agg <- function(x,
by = c("cluster_id", "sample_id"),
fun = c("median", "mean", "sum"),
assay = "exprs") {
fun <- match.arg(fun)
y <- assay(x, assay)
if (fun == "median" && !is.matrix(y))
y <- as.matrix(y)
fun <- switch(fun,
median = rowMedians,
mean = rowMeans,
sum = rowSums)
cs <- .split_cells(x, by)
pb <- map_depth(cs, -1, function(i) {
if (length(i) == 0) return(numeric(nrow(x)))
fun(y[, i, drop = FALSE])
})
map_depth(pb, -2, function(u) as.matrix(data.frame(
u, row.names = rownames(x), check.names = FALSE)))
}
# ==============================================================================
# generate a toy dataset SCE for unit-testing
# ------------------------------------------------------------------------------
#' @importFrom SingleCellExperiment SingleCellExperiment
.toySCE <- function() {
gs <- paste0("g", seq_len(ngs <- 100))
cs <- paste0("c", seq_len(ncs <- 2e3))
y <- sample(100, ngs * ncs, replace = TRUE)
y <- matrix(y, ngs, ncs, TRUE, list(gs, cs))
cd <- data.frame(
mapply(function(i, n)
sample(paste0(i, seq_len(n)), ncs, TRUE),
i = c("k", "s", "g"), n = c(5, 4, 3)),
stringsAsFactors = TRUE)
cd$s <- factor(paste(cd$s, cd$g, sep = "."))
colnames(cd) <- paste(c("cluster", "sample", "group"), "id", sep = "_")
SingleCellExperiment(assay = list(exprs = y), colData = cd)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.