##' @rdname gseaplot
##' @exportMethod gseaplot
setMethod("gseaplot", signature(x = "gseaResult"),
function (x, geneSetID, by = "all", title = "", color='black',
color.line="green", color.vline="#FA5860", ...){
gseaplot.gseaResult(x, geneSetID = geneSetID,
by = by, title = title,
color = color, color.line = color.line,
color.vline = color.vline, ...)
})
##' @rdname gseaplot
##' @param color color of line segments
##' @param color.line color of running enrichment score line
##' @param color.vline color of vertical line which indicating the
##' maximum/minimal running enrichment score
##' @return ggplot2 object
##' @importFrom ggplot2 ggplot
##' @importFrom ggplot2 geom_linerange
##' @importFrom ggplot2 geom_line
##' @importFrom ggplot2 geom_vline
##' @importFrom ggplot2 geom_hline
##' @importFrom ggplot2 xlab
##' @importFrom ggplot2 ylab
##' @importFrom ggplot2 xlim
##' @importFrom ggplot2 aes
##' @importFrom ggplot2 ggplotGrob
##' @importFrom ggplot2 geom_segment
##' @importFrom ggplot2 ggplot_gtable
##' @importFrom ggplot2 ggplot_build
##' @importFrom ggplot2 ggtitle
##' @importFrom ggplot2 element_text
##' @importFrom ggplot2 rel
##' @importFrom aplot plot_list
##' @author Guangchuang Yu
gseaplot.gseaResult <- function (x, geneSetID, by = "all", title = "",
color='black', color.line="green",
color.vline="#FA5860", ...){
by <- match.arg(by, c("runningScore", "preranked", "all"))
gsdata <- gsInfo(x, geneSetID)
p <- ggplot(gsdata, aes_(x = ~x)) +
theme_dose() + xlab("Position in the Ranked List of Genes")
if (by == "runningScore" || by == "all") {
p.res <- p + geom_linerange(aes_(ymin=~ymin, ymax=~ymax), color=color)
p.res <- p.res + geom_line(aes_(y = ~runningScore), color=color.line,
size=1)
enrichmentScore <- x@result[geneSetID, "enrichmentScore"]
es.df <- data.frame(es = which.min(abs(p$data$runningScore - enrichmentScore)))
p.res <- p.res + geom_vline(data = es.df, aes_(xintercept = ~es),
colour = color.vline, linetype = "dashed")
p.res <- p.res + ylab("Running Enrichment Score")
p.res <- p.res + geom_hline(yintercept = 0)
}
if (by == "preranked" || by == "all") {
df2 <- data.frame(x = which(p$data$position == 1))
df2$y <- p$data$geneList[df2$x]
p.pos <- p + geom_segment(data=df2, aes_(x=~x, xend=~x, y=~y, yend=0),
color=color)
p.pos <- p.pos + ylab("Ranked List Metric") +
xlim(0, length(p$data$geneList))
}
if (by == "runningScore")
return(p.res + ggtitle(title))
if (by == "preranked")
return(p.pos + ggtitle(title))
p.pos <- p.pos + xlab(NULL) + theme(axis.text.x = element_blank(),
axis.ticks.x = element_blank())
p.pos <- p.pos + ggtitle(title) +
theme(plot.title=element_text(hjust=0.5, size=rel(2)))
#plot_list(gglist = list(p.pos, p.res), ncol=1)
aplot::gglist(gglist = list(p.pos, p.res), ncol=1)
}
##' extract gsea result of selected geneSet
##'
##'
##' @title gsInfo
##' @param object gseaResult object
##' @param geneSetID gene set ID
##' @return data.frame
##' @author Guangchuang Yu
## @export
gsInfo <- function(object, geneSetID) {
geneList <- object@geneList
if (is.numeric(geneSetID))
geneSetID <- object@result[geneSetID, "ID"]
geneSet <- object@geneSets[[geneSetID]]
exponent <- object@params[["exponent"]]
df <- gseaScores(geneList, geneSet, exponent, fortify=TRUE)
df$ymin <- 0
df$ymax <- 0
pos <- df$position == 1
h <- diff(range(df$runningScore))/20
df$ymin[pos] <- -h
df$ymax[pos] <- h
df$geneList <- geneList
if (length(object@gene2Symbol) == 0) {
df$gene <- names(geneList)
} else {
df$gene <- object@gene2Symbol[names(geneList)]
}
df$Description <- object@result[geneSetID, "Description"]
return(df)
}
gseaScores <- getFromNamespace("gseaScores", "DOSE")
get_gsdata <- function(x, geneSetID) {
if (length(geneSetID) == 1) {
gsdata <- gsInfo(x, geneSetID)
return(gsdata)
}
lapply(geneSetID, gsInfo, object = x) |>
yulab.utils::rbindlist()
}
##' Horizontal plot for GSEA result
##'
##'
##' @title hplot
##' @param x gseaResult object
##' @param geneSetID gene set ID
##' @return horizontal plot
##' @export
##' @author Guangchuang Yu
hplot <- function(x, geneSetID) {
if (!inherits(x, "gseaResult")) {
stop("hplot only work for GSEA result")
}
gsdata <- get_gsdata(x, geneSetID)
ggplot(gsdata, aes(.data$x, .data$runningScore)) +
ggHoriPlot::geom_horizon(origin='min', horizonscale=4) +
facet_grid(Description~.) +
#ggHoriPlot::scale_fill_hcl(palette = 'Peach', reverse = TRUE) +
ggHoriPlot::scale_fill_hcl(palette = 'BluGrn', reverse = TRUE) +
theme_minimal() +
ggfun::theme_noyaxis() +
theme(
panel.spacing.y=unit(0, "lines"),
strip.text.y = element_text(angle = 0),
legend.position = 'none',
panel.border = element_blank(),
panel.grid = element_blank(),
) +
xlab(NULL) +
ylab(NULL)
}
##' GSEA plot that mimic the plot generated by broad institute's GSEA software
##'
##'
##' @title gseaplot2
##' @param x gseaResult object
##' @param geneSetID gene set ID
##' @param title plot title
##' @param color color of running enrichment score line
##' @param base_size base font size
##' @param rel_heights relative heights of subplots
##' @param subplots which subplots to be displayed
##' @param pvalue_table whether add pvalue table
##' @param ES_geom geom for plotting running enrichment score,
##' one of 'line' or 'dot'
##' @return plot
##' @export
##' @importFrom ggplot2 theme_classic
##' @importFrom ggplot2 element_line
##' @importFrom ggplot2 element_text
##' @importFrom ggplot2 element_blank
##' @importFrom ggplot2 element_rect
##' @importFrom ggplot2 scale_x_continuous
##' @importFrom ggplot2 scale_y_continuous
##' @importFrom ggplot2 scale_color_manual
##' @importFrom ggplot2 theme_void
##' @importFrom ggplot2 geom_rect
##' @importFrom ggplot2 margin
##' @importFrom ggplot2 annotation_custom
##' @importFrom stats quantile
##' @importFrom RColorBrewer brewer.pal
##' @author Guangchuang Yu
gseaplot2 <- function(x, geneSetID, title = "", color="green", base_size = 11,
rel_heights=c(1.5, .5, 1), subplots = 1:3,
pvalue_table = FALSE, ES_geom="line") {
ES_geom <- match.arg(ES_geom, c("line", "dot"))
geneList <- position <- NULL ## to satisfy codetool
gsdata <- get_gsdata(x, geneSetID)
p <- ggplot(gsdata, aes_(x = ~x)) + xlab(NULL) +
theme_classic(base_size) +
theme(panel.grid.major = element_line(colour = "grey92"),
panel.grid.minor = element_line(colour = "grey92"),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()) +
scale_x_continuous(expand=c(0,0))
if (ES_geom == "line") {
es_layer <- geom_line(aes_(y = ~runningScore, color= ~Description),
size=1)
} else {
es_layer <- geom_point(aes_(y = ~runningScore, color= ~Description),
size=1, data = subset(gsdata, position == 1))
}
p.res <- p + es_layer +
theme(legend.position = c(.8, .8), legend.title = element_blank(),
legend.background = element_rect(fill = "transparent"))
p.res <- p.res + ylab("Running Enrichment Score") +
theme(axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.line.x=element_blank(),
plot.margin=margin(t=.2, r = .2, b=0, l=.2, unit="cm"))
i <- 0
for (term in unique(gsdata$Description)) {
idx <- which(gsdata$ymin != 0 & gsdata$Description == term)
gsdata[idx, "ymin"] <- i
gsdata[idx, "ymax"] <- i + 1
i <- i + 1
}
p2 <- ggplot(gsdata, aes_(x = ~x)) +
geom_linerange(aes_(ymin=~ymin, ymax=~ymax, color=~Description)) +
xlab(NULL) + ylab(NULL) + theme_classic(base_size) +
theme(legend.position = "none",
plot.margin = margin(t=-.1, b=0,unit="cm"),
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.line.x = element_blank()) +
scale_x_continuous(expand=c(0,0)) +
scale_y_continuous(expand=c(0,0))
if (length(geneSetID) == 1) {
## geneList <- gsdata$geneList
## j <- which.min(abs(geneList))
## v1 <- quantile(geneList[1:j], seq(0,1, length.out=6))[1:5]
## v2 <- quantile(geneList[j:length(geneList)], seq(0,1, length.out=6))[1:5]
## v <- sort(c(v1, v2))
## inv <- findInterval(geneList, v)
v <- seq(1, sum(gsdata$position), length.out=9)
inv <- findInterval(rev(cumsum(gsdata$position)), v)
if (min(inv) == 0) inv <- inv + 1
col <- c(rev(brewer.pal(5, "Blues")), brewer.pal(5, "Reds"))
ymin <- min(p2$data$ymin)
yy <- max(p2$data$ymax - p2$data$ymin) * .3
xmin <- which(!duplicated(inv))
xmax <- xmin + as.numeric(table(inv)[as.character(unique(inv))])
d <- data.frame(ymin = ymin, ymax = yy,
xmin = xmin,
xmax = xmax,
col = col[unique(inv)])
p2 <- p2 + geom_rect(
aes_(xmin=~xmin,
xmax=~xmax,
ymin=~ymin,
ymax=~ymax,
fill=~I(col)),
data=d,
alpha=.9,
inherit.aes=FALSE)
}
## p2 <- p2 +
## geom_rect(aes(xmin=x-.5, xmax=x+.5, fill=geneList),
## ymin=ymin, ymax = ymin + yy, alpha=.5) +
## theme(legend.position="none") +
## scale_fill_gradientn(colors=color_palette(c("blue", "red")))
df2 <- p$data #data.frame(x = which(p$data$position == 1))
df2$y <- p$data$geneList[df2$x]
p.pos <- p + geom_segment(data=df2, aes_(x=~x, xend=~x, y=~y, yend=0),
color="grey")
p.pos <- p.pos + ylab("Ranked List Metric") +
xlab("Rank in Ordered Dataset") +
theme(plot.margin=margin(t = -.1, r = .2, b=.2, l=.2, unit="cm"))
if (!is.null(title) && !is.na(title) && title != "")
p.res <- p.res + ggtitle(title)
if (length(color) == length(geneSetID)) {
p.res <- p.res + scale_color_manual(values=color)
if (length(color) == 1) {
p.res <- p.res + theme(legend.position = "none")
p2 <- p2 + scale_color_manual(values = "black")
} else {
p2 <- p2 + scale_color_manual(values = color)
}
}
if (pvalue_table) {
pd <- x[geneSetID, c("Description", "pvalue", "p.adjust")]
# pd <- pd[order(pd[,1], decreasing=FALSE),]
rownames(pd) <- pd$Description
pd <- pd[,-1]
# pd <- round(pd, 4)
for (i in seq_len(ncol(pd))) {
pd[, i] <- format(pd[, i], digits = 4)
}
tp <- tableGrob2(pd, p.res)
p.res <- p.res + theme(legend.position = "none") +
annotation_custom(tp,
xmin = quantile(p.res$data$x, .5),
xmax = quantile(p.res$data$x, .95),
ymin = quantile(p.res$data$runningScore, .75),
ymax = quantile(p.res$data$runningScore, .9))
}
plotlist <- list(p.res, p2, p.pos)[subplots]
n <- length(plotlist)
plotlist[[n]] <- plotlist[[n]] +
theme(axis.line.x = element_line(),
axis.ticks.x=element_line(),
axis.text.x = element_text())
if (length(subplots) == 1)
return(plotlist[[1]] + theme(plot.margin=margin(t=.2, r = .2, b=.2,
l=.2, unit="cm")))
if (length(rel_heights) > length(subplots))
rel_heights <- rel_heights[subplots]
# aplot::plot_list(gglist = plotlist, ncol=1, heights=rel_heights)
aplot::gglist(gglist = plotlist, ncol=1, heights=rel_heights)
}
##' plot ranked list of genes with running enrichment score as bar height
##'
##'
##' @title gsearank
##' @param x gseaResult object
##' @param geneSetID gene set ID
##' @param title plot title
##' @param output one of 'plot' or 'table' (for exporting data)
##' @return ggplot object
##' @importFrom ggplot2 geom_segment
##' @importFrom ggplot2 theme_minimal
##' @export
##' @author Guangchuang Yu
gsearank <- function(x, geneSetID, title="", output = "plot") {
output <- match.arg(output, c("plot", "table"))
position <- NULL
gsdata <- gsInfo(x, geneSetID)
gsdata <- subset(gsdata, position == 1)
if (output == "table") {
res <- gsdata[, c("gene", "x", "runningScore")]
if (x[geneSetID, "NES"] > 0) {
res$core <- "NO"
res$core[1:which.max(gsdata$runningScore)] <- "YES"
} else {
res$core <- "NO"
res$core[which.min(gsdata$runningScore):nrow(res)] <- "YES"
}
names(res) <- c("gene", "rank in geneList", "running ES", "core enrichment")
rownames(res) <- NULL
return(res)
}
p <- ggplot(gsdata, aes_(x = ~x, y = ~runningScore)) +
geom_segment(aes_(xend=~x, yend=0)) +
ggtitle(title) +
xlab("Position in the Ranked List of Genes") +
ylab("Running Enrichment Score") +
theme_minimal()
return(p)
}
##' label genes in running score plot
##'
##'
##' @title geom_gsea_gene
##' @param genes selected genes to be labeled
##' @param mapping aesthetic mapping, default is NULL
##' @param geom geometric layer to plot the gene labels, default is geom_text
##' @param ... additional parameters passed to the 'geom'
##' @param geneSet choose which gene set(s) to be label if the plot contains multiple gene sets
##' @return ggplot object
##' @importFrom rlang .data
##' @export
##' @author Guangchuang Yu
geom_gsea_gene <- function(genes, mapping=NULL, geom = ggplot2::geom_text, ..., geneSet = NULL) {
default_mapping <- aes_(x=~x, y=~runningScore, label=~gene)
if (is.null(mapping)) {
mapping <- default_mapping
} else {
mapping <- modifyList(default_mapping, mapping)
}
if (is.null(geneSet)) {
data <- ggtree::td_filter(.data$gene %in% genes)
} else {
data <- ggtree::td_filter(.data$gene %in% genes & .data$Description %in% geneSet)
}
geom(mapping = mapping, data = data, ...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.