remove_correlated_helper <- function(mat, val, cutoff = 0.9) {
stopifnot(nrow(mat) == length(val))
cormat <- cor(t(mat), use = "pairwise.complete.obs")
diag(cormat) <- NA
keep <- seq_len(nrow(mat))
for (i in order(val, decreasing = TRUE)) {
if (i %in% keep) {
toremove <- which(cormat[keep, i] >= cutoff)
if (length(toremove) > 0)
keep <- keep[-toremove]
}
}
return(keep)
}
#' deviationsTsne
#'
#' Perform tsne using bias corrected deviations to visualize either cell/sample
#' similarity or motif/kmer/annotation similarity
#' @param object deviations result
#' @param threshold variability threshold -- use only deviations with
#' variability greater than threshold
#' @param perplexity perplexity parameter for tsne
#' @param theta theta parameter for tsne
#' @param max_iter max iterations parameter for tsne
#' @param what tsne for similarity of samples or annotations?
#' @param shiny load a shiny widget that enable you to explore perplexity and
#' variability threshold parameter?
#'
#' @return data.frame with two columns for the two dimensions of tSNE output
#' @export
#' @author Alicia Schep
#' @examples
#' # Load very small example results from computeDeviations
#' data(mini_dev, package = "chromVAR")
#'
#' tsne_res <- deviationsTsne(mini_dev, threshold = 0.8, shiny = FALSE)
#' # setting very low variabilitiy threshold because this is mini data set
#' # threshold should generally be above 1
#' # Use plotVariability to get a sense of an appropriate threshold
deviationsTsne <- function(object,
threshold = 1.5,
perplexity = if (what == "samples") 30 else 8,
max_iter = 1000,
theta = 0.5,
what = c("samples","annotations"),
shiny = FALSE) {
what <- match.arg(what)
stopifnot(inherits(object, "chromVARDeviations") ||
canCoerce(object, "chromVARDeviations"))
if (what == "samples"){
if (ncol(object)/3 <= perplexity) {
message("Perplexity given too high")
perplexity <- floor((ncol(object) - 1)/3)
message("Setting perplexity to ", perplexity)
}
vars <- row_sds(deviationScores(object), FALSE)
if (threshold > max(vars, na.rm = TRUE))
stop("Threshold too high")
if (sum(vars > threshold, na.rm = TRUE) < 2)
stop("Threshold too high, and/or too few non/NA")
if (shiny) {
res <- deviations_tsne_shiny(object, threshold, perplexity, max_iter,
theta)
message("Variability threshold used is: ", res$threshold)
message("Perplexity used is: ", res$perplexity)
tsne_res <- res$tsne
} else {
ix <- which(vars > threshold)
mat <- deviations(object)[ix, , drop = FALSE]
ix2 <- remove_correlated_helper(mat, vars[ix])
tsne_res <- Rtsne::Rtsne(t(mat[ix2, , drop = FALSE]),
perplexity = perplexity,
max_iter = max_iter,
theta = theta)
}
out <- tsne_res$Y
rownames(out) <- colnames(object)
return(out)
} else {
vars <- row_sds(deviationScores(object), FALSE)
if (threshold > max(vars, na.rm = TRUE))
stop("threshold too high")
if (sum(vars > threshold, na.rm = TRUE) < 2)
stop("Threshold too high, and/or too few non/NA")
if (shiny) {
res <- deviations_tsne_inv_shiny(object, threshold, perplexity, max_iter,
theta)
message("Variability threshold used is: ",res$threshold)
message("Perplexity used is: ", res$perplexity)
ix <- which(vars > res$threshold)
tsne_res <- res$tsne
} else {
mat <- deviations(object)
ix <- which(vars > threshold)
tsne_res <- Rtsne::Rtsne(mat[ix ,, drop = FALSE],
perplexity = perplexity,
check_duplicates = FALSE,
max_iter = max_iter,
theta = theta)
}
out <- as.data.frame(tsne_res$Y)
rownames(out) <- rownames(object)[ix]
colnames(out) <- c("Dim1","Dim2")
return(out)
}
}
deviations_tsne_shiny <- function(object, threshold = 1.5, perplexity = 30,
max_iter, theta){
vars <- row_sds(assays(object)$z, FALSE)
mat <- assays(object)$deviations
ix <- remove_correlated_helper(mat, vars)
mat <- mat[ix, , drop = FALSE]
vars <- vars[ix]
ui <- miniPage(
gadgetTitleBar("tsne visualization: adjust parameters on left"),
fillCol(
flex = c(1,4),
miniContentPanel(
fillRow(
flex = c(1,1,2),
numericInput("perplexity",
"Perplexity:",
min = 3,
max = floor(ncol(object)/2),
value = perplexity,
step = 1, width = "90%"),
numericInput("threshold",
"Variability threshold:",
min = 1,
max = round(max(vars, na.rm = TRUE) - 0.1,
digits = 2),
value = threshold,
step = 0.1, width = "90%"),
selectizeInput("color",
"Color by",
options = list(dropdownParent = 'body'),
choices =
c("none",
colnames(colData(object)),
rownames(object)[order(vars, decreasing = TRUE)]),
selected = "none", width = "90%"))),
miniContentPanel(plotlyOutput("plot1", height = "100%")),
width = "95%",
height = "95%")
)
server <- function(input, output, session) {
get_tsne <- reactive({
Rtsne::Rtsne(t(mat[which(vars > input$threshold), , drop = FALSE]),
perplexity = input$perplexity,
max_iter = max_iter, theta = theta)
})
# Render the plot
output$plot1 <- renderPlotly({
tsne <- get_tsne()
if (input$color == "none"){
p1 <- ggplot(data.frame(x = tsne$Y[,1], y = tsne$Y[,2],
text = colnames(object)),
aes_string(x = "x", y = "y", text = "text")) +
geom_point(size = 2) + chromVAR_theme(12) +
xlab("tSNE dim 1") + ylab("tSNE dim 2")
} else if (input$color %in% colnames(colData(object))){
p1 <- ggplot(data.frame(x = tsne$Y[,1], y = tsne$Y[,2],
color = colData(object)[,input$color],
text = colnames(object)),
aes_string(x = "x", y = "y", col = "color",
text = "text")) +
geom_point(size = 2) + chromVAR_theme(12) +
labs(col = input$color) +
xlab("tSNE dim 1") + ylab("tSNE dim 2") +
theme(legend.key.size = grid::unit(0.5,"lines"))
} else{
p1 <-
ggplot(data.frame(x = tsne$Y[,1],
y = tsne$Y[,2],
color = deviationScores(object[input$color,])[1,],
text = colnames(object)),
aes_string(x = "x", y = "y", col = "color", text = "text")) +
geom_point(size= 2) +
scale_color_gradient2(name = rowData(object[input$color,])[,"name"],
mid = "lightgray", low = "blue", high = "red") +
chromVAR_theme(12) +
xlab("tSNE dim 1") + ylab("tSNE dim 2") +
theme(legend.key.size = grid::unit(0.5,"lines"))
}
ggplotly(p1)
})
observeEvent(input$done, {
stopApp(list(perplexity = input$perplexity, threshold = input$threshold,
tsne = get_tsne()))
})
}
runGadget(ui, server)
}
deviations_tsne_inv_shiny <- function(object, threshold, perplexity,
max_iter, theta){
vars <- row_sds(assays(object)$z, FALSE)
mat <- deviations(object)
ui <- miniPage(
gadgetTitleBar("tsne visualization: adjust parameters on left"),
fillCol(flex = c(1,4),miniContentPanel(fillRow(
numericInput("perplexity", "Perplexity", min = 3,
max = floor(ncol(object)/2),
value = perplexity, step = 1, width = "90%"),
numericInput("threshold", "Variability threshold:", min = 1,
max = round(max(vars, na.rm = TRUE) - 0.1,
digits = 2),
value = threshold, step = 0.1, width = "90%"))),
miniContentPanel(plotlyOutput("plot1", height = "100%")),
width = "95%",
height ="95%")
)
server <- function(input, output, session) {
get_tsne <- reactive({
Rtsne::Rtsne(mat[which(vars > input$threshold), , drop = FALSE],
perplexity = input$perplexity,
max_iter = max_iter, theta = theta,
check_duplicates = FALSE)
})
# Render the plot
output$plot1 <- renderPlotly({
tsne <- get_tsne()
p1 <-
ggplot(data.frame(x = tsne$Y[,1], y = tsne$Y[,2],
text = rownames(object)[which(vars >
input$threshold)]),
aes_string(x = "x", y = "y", text = "text")) +
geom_point(size = 2) + chromVAR_theme(12) +
xlab("tSNE dim 1") + ylab("tSNE dim 2")
ggplotly(p1)
})
observeEvent(input$done, {
stopApp(list(perplexity = input$perplexity, threshold = input$threshold,
tsne = get_tsne()))
})
}
runGadget(ui, server)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.